OGD Workshops 2009

Pragmatic Source
Code Management

A practical guide to 42

=

Publican

OOOOOOOOOOOOOOOOOO

Jeroen van Meeuwen, RHCE

Pragmatic Source Code Management Draft

OGD Workshops 2009 Pragmatic Source Code Management
A practical guide to 42
Edition 0

Author Jeroen van Meeuwen, RHCE Jj.van.meeuwen@ogd.nl
Copyright © 2009 Operator Groep Delft B.V.

Copyright © 2009 Operator Groep Delft B.V. This material may only be distributed subject to the terms
and conditions set forth in the GNU Free Documentation License (GFDL), V1.2 or later (the latest
version is presently available at http.//www.gnu.org/licenses/fdl.txt).

A practical guide to Pragmatic Source Code Management, or 42, otherwise known as the answer to
the question of "Life, Everything and the Universe", from the Hitchhikers Guide to the Galaxy.

mailto:j.van.meeuwen@ogd.nl
http://www.gnu.org/licenses/fdl.txt

Draft Draft

Preface v
I 1=T4 00 T aTe] (o |V PSPPI %

1.1 CRANGESEL ..ottt e et e ea e eaa s %

2 oo T2 1 0 211 S PTUR Vi

TR o] -1 o o Vi

I - Vo vii

1.5. merge CONFIICE ..uuiiii e e vii

1.6, MEIQE SHALEQY - .oetniiiiieit et et e et e et e e e et e e et e e e b e e e e eea e eees vii

1.7, DrANCR MEBIGE e et e et e et e et e e e e et vii

1.8. Branch reDASEoeeiiii e vii

1.9. OPEIALiNG SYSEM .uuiiiiiii ettt e e et e e et e e et e e b vii

2. FEEADACK ...ttt vii

1. Introduction 1
1.1. ADOUL thiS DOCUMIEBNT ...ttt et e e e e e e e et e e e e e e e eeanns 1

1.2. Source Code Management SYSIEIMSocuuiiiu it e e e e e e e e e eaneeees 1

2. Revision Control 3
2.1. Problems with Simplistic ReviSion CONtrolcooviiiiiiiis e 3
2.1.1. Removing @ SiNgle REVISIONcciiuuiiiiiiiiiiei ettt 4

2.2. One Development Path ... e 5

3. Software Development 7
3.1. SOftware DEPENUENCIESiiui it eii ettt et e et e et e e et e e et eeaa e eanaaeees 7

3.2. Software Development iN TEAMIS i i ittt 8

3.3. Community and CONIDULOISiiiite ettt e 8
3.3.1. The Demand for Tags and BranChescccoceiiiiiiiiiiicii e 9

3.4. Long Term Source Code ManagEMENTcceuuieiiiieeiii e eee e e e e e e e e e e et eaanas 9

3.5. ChangeSet CONSISIENCYuiiuuiiiiiiti et ettt e e et e e et e et e e an e e et e eeannas 9

3.6. EVEr GIOWING PrOJECES ...iiiiiiiiiit ettt ettt e e et e e et e e et e e e e eanas 9

4. Pragmatic SCM 11
4.1. Tags @nd BIanCRESiiiiiiiiiiii ettt e et e e e e 11

5. Example Project: VMime 13
5.1. ConsSUMET OFf VIMIMIEuuiiiiiiiii et e e et e e et e e e e et 13

5.2. Different Versions Of VIMIME ... e e e 13
5.2.1. UPSIIEAM VEISIONSeuiiiitieit ettt e et et et e et e e et e e et e e e b e eenaees 13

I 4 - | - WYL= (=1 (o] 13

5.3. Working Pragmatic SCM MaAQJIC .. .c.uueiiiiiiiieiii e e e e e e e eaees 13

A. SCM Conflict Demonstration 15
B. Revision History 19
Index 21

Draft Draft

Preface

1. Terminology

Some terminology used throughout this guide, to clarify what it is we are talking about.

1.1. Changeset

A changeset is a single change, preferably consistent, to a source tree, such as the addition of a
feature, or a bug being fixed. A changeset therefor may consist of a single commit, or multiple commits
to a development path.

Changeset with a Single Commit
An example of a single changeset to a program's source tree using a single commit:

A "fix typo" type of bugfix:

commit 87788a87185cf7ch6c235a20d3a51d304f7b6516
Author: Jeroen van Meeuwen (OGD) <j.van.meeuwen@ogd.nl>
Date: Mon Dec 28 17:01:24 2009 +0100

Fix typo (ticket #122)

diff --git a/hello_world.sh b/hello_world.sh
index 9436431..cd16289 100644

--- a/hello_world.sh

+++ b/hello_world.sh

@@ -1,3 +1,3 @@

#!/bin/bash

-echo "Helo World!"
+echo "Hello World!"

Changeset with Multiple Commits Example
An example of a single changeset to a program'’s source tree with multiple commits:

1. The first commit makes a non-intrusive change to the application's code such as an if/else
statement with the default being the exact same behaviour the application had previously.
Whatever the actual functional change may be given changing the configuration setting doesn't
matter in this example.

2. The addition of some configuration file logic that enables the application to read that setting from
the configuration file, parse it, check it, and then change the behaviour described in step 1.

3. The addition of a command-line parameter to the application enabling the user to specify the
desired behaviour of the application given the change described in list item 1.

The addition of the feature (being able to change the application through a configuration file option or
with help of a command-line option), is a single changeset. This changeset could be reverted in order
to remove the functionality, in case (for example), the feature is not sustainable for a released version
of the application.

Preface Draft

1.2. Commit

A commit (or revision), is a single patch or modification to the source repository.

1.3. Branch

A branch is one continuous development path. A single source code repository can have multiple
branches, allowing various development paths for the application. Common use of branches include
version specific branches, platform specific branches, or operating system (version) specific branches.

1.3.1. (Feature) Development Branches

Suppose a web application requires refactoring it's Javascripts and CSS Stylesheets. A development
team agrees that a couple of people will be working on the refactoring of those scripts and stylesheets,
but doing so might break the mainstream development version of the web application, as pieces of
content might all of a sudden dissappear and all kinds of events might render the development version
of the web application unuseable, this unfit for other developers to continue working on.

The team decides to have the refactoring be done in a different branch, as to not interfere with
regular development. Such a branch is a development branch, to be merged with the mainstream
development branch once the refactoring is done.

1.3.2. Version Specific Branches

Imagine a program reaches the point where version 1.0 can be released. Maybe the roadmap for
the program says development continues towards 2.0, and 1.0 can only contain fixes from this point
forward. Imagine version 1.0 might have to be supported for a period of 7 years (the support- and life
cycle of an Enterprise Linux distribution).

In such cases, branching off to program-1.0 makes sense, since that the program probably needs
a continuous development path in order to be able to apply any fixes to the source code of program
version 1.0.

1.3.3. Platform Specific Branches

Imagine a program is released for Linux as well as Windows. In such cases, it can be reasonable to
give both platforms their own continuous development path (although not necessarily adviseable), so
that development for Windows can continue separately from development for Linux.

Even though this might not be adviseable, one could chose to have those platform specific branches
anyway to allow faster development for each platform (only to merge changes and make them
interoperable later on).

1.3.4. Operating System or Distribution (Version) Specific Branches

Think of a program that is specifically designed to work on one type of distributions, say Fedora (F in
short), and it's Enterprise Linux grade derivatives, Red Hat Enterprise Linux and CentOS (short; EL).

At a given point (say Fedora Core 6 or FC-6), an Enterprise Linux (major version 5) grade distribution
is created from what is in the Fedora Core distribution. This would be a reasonable time for the
distribution specific application to also branch off and create it's EL-5 version of the program, since the
Enterprise Linux variant of the application will need to be supported for 7 years.

Vi

Draft tag

1.4. Tag

A tag is a point in a source code repository's history. You would use a tag to be able to retrieve the
code at a specific point in time, relatively easy. Example tags are versioned tags, where you tag the
point in a source tree development path whenever you release a specific version.

1.5. Merge Conflict

When multiple commits or multiple changesets need to be merged into one continuous development
path, a merge conflict may arise.

1.6. Merge Strategy

When multiple commits or multiple changesets need to be merged into one continuous development
path, a merge strategy helps you determine what commits and what changesets overrule other
commits and changesets.

1.7. Branch Merge

A branch merge happens when two seperate development paths are merged onto one branch. This
latter branch can be one of the two development paths that is merged, but can also be a third branch.

Suppose you have a version specific branch program-1. 0 for continued development on the 1.0
series of products of program. Suppose someone fixes bug #123, while someone else fixes bug #435,
each of them using a separate branch to do so, but also changing the same code. Getting the changes
back into mainstream requires a branch merge between the two branches used to fix the bugs.

1.8. Branch Rebase

A branch rebase happens when two seperate development paths need to be merged onto the current
branch in a very specific way.

You are on one branch (say, master -df -444), and you want to rebase your changes on another
branch (say, master).

You will want to rebase the master -df -444 branch using the master branch, meaning that your
changes are going to be applied to the codebase currently in master. In order to do so, you will need
to reset your branch to what is currently in the master branch, only to then apply each change you
made in the master -df -444 branch one by one.

This is different from branch merging, where changes are merged. With rebasing, you are re-applying
your changes based on a different HEAD. With merging, you are applying all changes in different
branches given a merge strategy. You could think of branch rebasing as merging though, with a very
specific merge strategy.

1.9. Operating System

Examples of operating systems are win32, Linux, Darwin. This does not include the version of the
operating system, such as Linux 2.4 or Darwin 10.4.

2. Feedback

You should over ride this by creating your own local Feedback.xml file.

Vii

Chapter 1. Draft

Introduction

This book is a guide to pragmatic Source Code Management (SCM). With a few simple, example
software development projects and a few scenarios for those software development projects, we hope
to give you some more insight on why source code management should be done properly, pragmatic,
and how it could be done so.

1.1. About this Document

The creation and maintenance of this book is (and has been) a collaborative effort, hopefully
introducing you to pragmatic SCM all the way from the very basics onto the more advanced topics.

It has originally been developed as a guide to SCM for developers unfamiliar with various SCM topics
such as continuous development paths, branching and tagging, or how to use these features in a
software development project.

For those of you readers already familiar with one or the other type of SCM system(s), please realize
this book is not a discussion on which SCM system is best suited for any given type of software
development project, but a workshop of the type creating awareness of applying (best?) practices
using the proper kind of SCM system, whichever you find most appropriate.

1.2. Source Code Management Systems

Well-known, mature Source Code Management systems include:
» Bazaar

* Subversion

* GIT

* Mercurial

« CVS

* RCS

Of course, each of these SCM systems has its features, advantages and disadvantages, and in this
document, we'll merely just emphasize some of them. However, we'll not do a full-blown comparison.
The authors hope you can make up your own mind.

Chapter 2. Draft

Revision Control

Revision control (also known as version control, source control or (source) code management) is
about the ability to keep two or more revisions of a given file or directory tree apart. It allows you to
track changes made between different revisions. In it's simplest form, the set of changes results in only
one final working copy.

One example of revision control in it's simplest form is the revision control often available in a text
document processor such as Microsoft Word or OpenOffice.org Writer.

This type of embedded revision control allows you to do only either one of two things:

1. Create a new revision of the document.
2. Checkout a previously created revision.

You can compare this type of revision control with the ability to Undo or Redo changes in most
applications. Once you Undo something, and then do something other then Redo, your Redo list is
lost.

Another example of simplistic revision control is a Wiki page. A Wiki page has one current version (the
latest revision), and a set of changes. All changes put together form the latest revision of the page.
This latest revision is what you see when you visit the Wiki page.

To be able to put revision control on a Wiki page, the database stores the following items:

» Changesets to a page, including date/time, author information, and a commit message.
» The latest complete revision of the page, built from all current changesets.

The current version of a Wiki page is built from a chronological set of changes to the page, and the
final page (the working copy) is stored in the database for efficiency; It would require a lot more
processing power to build (and rebuild, and rebuild) the entire page from its related changesets every
time the page was requested.

If a user or administrator removes one or more sequential changes from the stack of changes, the
page can often be rebuilt by stacking all remaining changes on top of one another. However, removing
one changeset could mean the following changeset could not be applied any longer. Suppose there is
change #11 changing a line, and change #12 changing that very same line. When you pop change #11
off the stack of changes, change #12 no longer applies cleanly. You are being forced to merge change
#12 on top of change #10.

A Wiki page or text document rarely needs two or more separate continuous development paths.
There is practically only one way to go from a former version of the document to a newer version of
the document, on to a future version of the document.

2.1. Problems with Simplistic Revision Control

Sometimes, removing one change from a stack of changes results in (parts of) other changes to not
be applicable anymore. You can imagine how a tower of bricks can only have so many bricks removed
half-way up the tower. See the following example, where we edit a README file three times;

Revision 1
Our example "program" has a simple README file, which reads:

Chapter 2. Revision Control

Draft

This is the original README file

This is revision 1, and the changeset (to create revision 1), looks as follows:

--- /dev/null 2009-09-01 15:26:52.811115027 +0200
+++ README.revl 2009-09-03 15:04:48.781391924 +0200
@@ -0,0 +1 @@

+This is the original README file

Revision 2
Someone edits revision 1 and creates revision 2. The README file now reads:

This is the 2nd revision of the README file

The change reads as follows:

--- README.revl 2009-09-03 15:04:48.781391924 +0200
+++ README.rev2 2009-09-03 15:05:00.734386713 +0200
@@ -1 +1 @@

-This is the original README file

+This is the 2nd revision of the README file

What this diff, or changeset, describes, is that a line (somewhere around line number 1) containing

This is the original README file
is to be removed, and instead a line containing
This is the 2nd revision of the README file

is to be added.

Revision 3
Someone edits revision 2 and creates revision 3. The file now reads:

This is the 3rd revision of the README file

The differences between revision 2 and revision 3 read:

--- README.rev2 2009-09-03 15:05:00.734386713 +0200
+++ README.rev3 2009-09-03 15:05:09.060422417 +0200
@@ -1 +1 @@

-This is the 2nd revision of the README file

+This is the 3rd revision of the README file

2.1.1. Removing a Single Revision

Now imagine revision 2 is being pulled from the stack of changes. Changeset #3 can no longer be

applied, because there is no line "This is the 2nd revision of the README file"to be

removed.

Draft

One Development Path
merge succeeds;

This creates a conflict, since the remaining changesets can no longer be stacked (applied in
chronological order, one on top of the other). As such, in the most simplistic form of revision control,

one can only pop the latest revision off the stack, in order to roll back (a set of) changes. One cannot
to revision #1.

just simply remove any random changeset from the middle of the stack, unless of course the resulting

Imagine the README file had three lines, and we edited three seperate lines in each revision like in

2.2. One Development Path

the previous example. Removing changeset #2 would still be compatible with applying changeset #3

ro

When you do use simplistic revision control (such as what you do in the case of Wiki pages or Office

documents), Figure 2.1, “One continuous development path” would be illustrating the development
path and history of the document.
rl

r2 r3 rd rs ro ri rgé rg
I I R N N N
R

Figure 2.1. One continuous development path

current
One change is stacked onto a series of other changes. There is no way to derive from that one path

the document is on, and the changes that other people are going to make to the document. You

the document by other people, the harder the merge is going to be.

cannot simply branch off and say you are going to give the document a different layout, only to merge
in changes other people have made, unless you have a merge strategy. The more changes applied to

rg rl

In the end, simplistic revision control is going to give you one development path and one development
changes aside from the usual revision-to-revision changes are still going to need to be folded into that
very one development path.

r2

path only. See Figure 2.2, “Folding changes into the development path” for an illustration on how

r3 rd rs ré r ré ra
[I I N N
I I O

-
-
+
+
=
=
=
=
=
[

d

[

r

current
3 (do some work)
Figure 2.2. Folding changes into the development path

Chapter 3. Draft

Software Development

While the most basic form of Revision Control might work for Wiki pages and Office documents, you
can imagine that in more complex scenarios, such as Software Development, you may want more
then single stream revision control with just one continuous development path (for example, multi-
stream revision control). An SCM system with just simple revision control does not suffice for software
development.

One or more of the following conditions may apply when using a SCM system in software
development:

» The software may need to be compatible with more then one operating system distribution and/or
version.

» The software may need to be supported for a while after the product is released.
» The software may be Free and Open Source software.
* You may have more then one person working on the software.

» You may need different versions of the software source tree to be available in various locations and
control which version is available in what location very granularly.

* You may need different authentication and authorization for internal and external development
versions of the program.

Now imagine you had to work on your programs source code like if it were a Wiki page. There would
be only 1 working copy, and that one working copy would have to work on all supported platforms.
Everyone involved with the project can only work on that one working copy. All changes, including
compatibility changes within a piece of software would have to happen within that working copy. Like
we suggested before, simplistic single stream revision control would not suffice.

This chapter briefly discusses some of the constraints you may face in software development, that
justify choosing a more complex SCM system, and managing your source code pragmatically.

3.1. Software Dependencies

Software is most likely to have dependencies on other software. There is no all-inclusive piece of
software, that runs entirely on it's own, without a single dependency on some other piece of software.
For one, all software needs an Operating System, and one Operating System might behave differently
then another Operating System.

These kind of dependencies are called platform dependencies. Linux behaves differently then
Windows, and Windows NT 4.0 in turn behaves differently then Windows 2008. Each of these
platforms requires the software to be altered.

Then, each version of the platform ships its own set of software. For example; Red Hat Enterprise
Linux 5 ships with gcc-4.3 and ruby-1.8.5, whereas Red Hat Enterprise Linux 6 ships (is going to
ship) gcc-4.4 and ruby-1.8.6. Advanced Programming Interface of the software available on the
platform might change, as well as the requirements to your software.

Chapter 3. Software Development Draft

gcc-4.3 vs. gcc-4.4

In order for a program that needs to be compiled with gcc to be compatible with both version 4.3 and
4.4, one may need two separate, continuous development paths. Luckily in the case of gcc, 4.4
code can often be compiled with version 4.3 of gcc as well, and 4. 3 code needs minor adjustments
to be compiled with gcc-4.4, which is basically just more strict then its predecessor.

ruby-1.8.5 vs. ruby-1.8.6

In the case of ruby-1.8.5 vs. ruby-1.8.6, changes to the software program dependent on ruby that
would make the software compatible with both versions of ruby are often not as easy to implement.
There's API changes (to for example DateTime. parse () syntax), and maybe some required
applications are only available with ruby-1.8.6 (such as the Ruby Gem sanitize).

More on how to work out these differences between platforms and software dependencies later on in
this document.

3.2. Software Development in Teams

Most software is developed as part of some kind of team effort. When multiple developers work on the
same project, the chances of (unintentionally) creating a merge conflict rises.

Merge conflicts arise when changes between different versions of the program conflict with one
another. Maybe you and your colleague both edited the same line in the same file, but edited them
differently.

In order to address merge conflicts, one needs a merge strategy. While different SCM systems feature
different kinds of utilities facilitating different merge strategies, making sure you have a merge strategy
for any given kind of conflict defines the usefulness of pragmatic source code management.

3.3. Community and Contributors

If a project is Free Software, and many of them are, then one source code repository in one location
may not suffice to satisfy the need of all your contributors.

A single source code repository has standards like what is conform a roadmap for a certain branch,
and when you branch and what the branch name is like, or what to tag and what the tag name is like.
If these standards would not be applied to the source code repository, tracking what is what exactly
becomes more difficult over time not to say it quickly becomes a giant mess. With only one source
code repository and with multiple contributors in your community, the demand for tags and branches
other then those relevant to the upstream project quickly grows, and it becomes harder to control the
source code repository as there will be more exceptions to the standards as work-flows change and
differ between various people.

Some examples of very basic standards include:

« Only complete changesets can be pushed upstream. This means that no single commit can break
the program, or, put more plainly, no "Fix typo" commits are allowed.

« Only clean code is committed. Code that conforms to coding standards and best practices, including
indentation, function names, corresponding unit and functional tests, proper changelog entries.

» The changeset fixes a bug, adds a feature on the current roadmap or enhances the program within
its current functionality in order to go to the master branch.

Draft The Demand for Tags and Branches

e The changeset has been reviewed and OK'ed by at least one or two other valued contributors.

» The changesets commit message is clear and distinctive. In other words, no "Let's try this instead",
or "Updating program".

3.3.1. The Demand for Tags and Branches

Imagine the foo program mentioned earlier. Upstream releases version 1.0, but in order for the
program to work on Fedora, it needs a patch or two. One patch may be to make sure all files end up in
the right location according to Fedora standards (useless to upstream), while another patch is to make
sure foo-1.0 compiles with gcc-4.4. These patches can be applied to the RPM package (on top of the
released tarball of version 1.0), but the package maintainer also needs a way to develop and track his
changes, and make them into nice patches. Those patches relevant to upstream will only be released
by upstream in either 1.1 or 1.0.1, consituting a new release and so for the time being they are going
to need to be patches shipped with the RPM package.

Long story short, in this scenario there are two development forces at work; 1) The upstream
development team, and 2) the downstream packager(s).

If both were to operate in a single source code repository, the release of version foo-1.0 would
probably constitute the following branches: foo-1. 0 for upstream support, and then foo-1.0-
rawhide, foo-1.0-f11, foo-1.0-f10, foo-1.0-el4 and foo-1.0-el5 for downstream
packaging for the RPM based distributions, not to mention openSUSE, SUSE, Debian, *buntu, Gentoo
or other Linux distributions.

3.4. Long Term Source Code Management

SCM systems, for software source code with an actual future, need to be very efficient in their storage
footprint, as well as in the availability of continuous development paths (branches) and specific
versions (tags). The cost of these operations, branching, tagging, and branching off from a certain tag
whenever the need arises, cannot increase too much over time. The cost effectiveness of a source
code management system determines the long term availability of all that a software development
team needs to optimally use the features of said source code management system.

If tagging a specific version entails you copy the entire source code tree you tag onto a different
location, then imagine what the software tree looks like in 5 years after having tagged a couple of
dozen times.

If branching off entails you copy the entire source code tree as well, then also think about this new
continuous development path being tagged to indicate you have released a specific version. Again you
copy the entire source code tree, which isn't exactly efficient or cost effective.

3.5. Changeset Consistency

Within every development path, you would want to create the possibility to make changesets
applied to developing, say, a specific feature to not include "Fix typo" commits, and thus consistent
changesets.

3.6. Ever Growing Projects

para

Chapter 4. Draft

Pragmatic SCM

para

4.1. Tags and Branches

para

11

Chapter 5. Draft

Example Project: VMime

VMime is a powerful C++ class library for working with MIME messages and Internet Messaging
services like IMAP, POP and SMTP. The website of the VMime project is at http://www.vmime.org.

The VMime project uses Subversion as the Source Code Management system, at https.:/
vmime.svn.sourceforge.net/svnroot/vmime/. As you can see in the tags/ sub-directory, the project
does not always create points of reference for each released version of the program, but that is of later
concern.

5.1. Consumer of VMime

A consumer of VMime is Zarafa, a Groupware environment. You can find Zarafa at http.//
www.zarafa.com.

Zarafa has created a number of patches against upstream versions ©.7.0 and 0.7.1, creating

it's own fork. While reasonable when looked at from the perspective of Zarafa, imagine every other
application depending on a library plus a few patches did this. Without the patches going to upstream
veryone would be running in circles.

Zarafa now strongly depends on their own 0.7.1 version, because of the patches integrated, and
the API compatibility of VMime with Zarafa. One could argue that Zarafa is frozen to a forked
libvmime-0.7.1.

5.2. Different Versions of VMime

Right now, there are different versions of VMime:

5.2.1. Upstream Versions
Upstream has released the following versions:

1. 0.7.0 (unmarked in SVN)
2. 0.8.0 (unmarked in SVN)
3. 0.8.1 (unmarked in SVN)

4. 0.9.0 (SVUN tag)

5.2.2. Zarafa Versions
1. 0.7.1 (no SCM available)

5.3. Working Pragmatic SCM Magic

e libvmime-0.7.0, upstream release of version 0.7.0
e libvmime-0.7.1, upstream release of version 0.7.1

e upstream-libvmime-0.7.1, version 0.7.1, with backports of patches accepted upstream but
not released in any 0.7.x API version.

13

http://www.vmime.org
https://vmime.svn.sourceforge.net/svnroot/vmime/
https://vmime.svn.sourceforge.net/svnroot/vmime/
http://www.zarafa.com
http://www.zarafa.com

Chapter 5. Example Project: VMime Draft

e zarafa-libvmime-0.7.1, version 0.7.1, with all patches from Zarafa (including patches not
yet proposed upstream, or not yet accepted by upstream).

e libvmime-0.8.0, upstream release of 0.8.0
e libvmime-0.8.1, upstream release of 0.8.1

e libvmime-0.9.0, upstream release of 0.9.0

14

Draft Draft

Appendix A. SCM Conflict
Demonstration

The following is a step-by-step demonstation of a set of changes applied to one end, conflicting with
a set of changes applied on another end. Follow the steps to (re-)create the conflict and to get an
impression of the difficulties that come with merging changes.

In this demonstration, we use Subversion because it is the easiest Source Code Management
system to create a conflict with, that needs immediate resolving. Also, while the problem introduced
in this example is practically inherent to applying full translations to the actual codebase rather then
allowing translations to be loaded through appropriate mechanisms, please realize it is not about the
translations, and it's not about whether this conflict could have been avoided.

1. Onyour system, create a SVN repository:

$ sudo svnadmin create /srv/hello.svn
$ sudo chown -R “id -u" /srv/hello.svn

2. While in your home directory, clone this repository for developer 1:

$ svn co file:///srv/hello.svn ~/hello.svn.devl
Checked out revision 0.

3. Create the initial hello. sh:

cd ~/hello.svn.devl
cat >hello.sh<<EOF
#!/bin/bash

This is probably the most complex program you've ever seen.

echo "Hello World!"
EOF
svn add hello.sh
hello.sh
svn ci -m "First version of the hello program"
Adding hello.sh
Transmitting file data .
Committed revision 1.

$
$
>
>
>
>
>
>
$
A
$

4. Checkout this repository for developer 2:

$ cd ~
$ svn co file:///srv/hello.svn ~/hello.svn.dev2
Checked out revision 1.

5. Translate hello. sh to Dutch for developer 1:

$ cd ~/hello.svn.devl
$ cat >hello.sh<<EOF
> #!/bin/bash

>
> # Dit is waarschijnlijk het meest complexe programma dat

15

Appendix A. SCM Conflict Demonstration

Draft

je ooit hebt gezien.

echo "Hallo Wereld!"
EOF

vV V. V V

6. Optionally, examine the changes you made:

$ svn diff

7. Checkin your changes:

$ svn ci -m "Dit is de Nederlandse versie van hello.sh"
Sending hello.sh

Transmitting file data .

Committed revision 2.

8. Translate revision #1 for developer 2 to French:

cd ~/hello.svn.dev2
cat >hello.sh<<EOF
#1/bin/bash

Je ne parles pas Francais du tout.

echo "Salut le monde!"

EOF

svh ci -m "Very bad translation to French"
Sending hello.sh

svn: Commit failed (details follow):

svn: File '/hello.sh' is out of date

€®“ V V.V V V V & &

To resolve the conflict, developer 2 needs to do the following:

1. Pull the updates:

$ svn up

Conflict discovered in 'hello.sh'.

Select: (p) postpone, (df) diff-full, (e) edit,
(mc) mine-conflict, (tc) theirs-conflict,
(s) show all options:

Let's see what options we have:

* (p) postpone
Postpone merging the changes, leaving the current working copy in conflict (unmerged).

- (df) diff-full

Show exactly what this conflict is all about, in a full diff, allowing the developer to examine the

impact of the merge conflict. In this demonstration, the output would be:

Select: (p) postpone, (df) diff-full, (e) edit, (r) resolved,
(mc) mine-conflict, (tc) theirs-conflict,
(s) show all options: df
--- .svn/text-base/hello.sh.svn-base Thu Sep 3 16:08:00 2009
+++ .svn/tmp/hello.sh.tmp Thu Sep 3 16:31:05 2009

16

Draft

@@ -1,5 +1,14 @@
#!/bin/bash

-# This is probably the most complex program you've ever seen.
+<<<<<<< ,mine

+# Je ne parles pas Francais du tout.

+# Dit is waarschijnlijk het meest complexe programma dat
+# je ooit hebt gezien.
+>>>>>>> 12

-echo "Hello World!"
+<<<<<<< ,mine
+echo "Salut le monde!"

+echo "Hallo Wereld!"

+>>5>5>5>5>> ,r2

Select: (p) postpone, (df) diff-full, (e) edit, (r) resolved,
(mc) mine-conflict, (tc) theirs-conflict,
(s) show all options:

Taking the execution of echo as an example, you can see that both changes agree on the
removal of the line that says:

echo "Hello World!"

But then disagree about the line that should replace it, where the changes that developer 2 is
trying to commit (indicated with .mine, between <<<<<<< .mine and =======) says it should
be replaced with:

echo "Salut le monde!"

and revision #2 (already committed and pushed upstream, between ======= and
>>>>>>> . r2) says it should be replaced with:

echo "Hallo Wereld!"
More obvious then df is dc

(dc) display-conflicts
Show the actual conflict, rather then the full diff between my changes and the ones I'm pulling in.

In our example scenario, this shows us the following:

Select: (p) postpone, (df) diff-full, (e) edit, (r) resolved,
(mc) mine-conflict, (tc) theirs-conflict,
(s) show all options: dc

#!/bin/bash

<<<<<<< MINE (select with 'mc"') (3)

Je ne parles pas Francais du tout.

[TTTT1] ORIGINAL (3)

This is probably the most complex program you've ever seen.

Dit is waarschijnlijk het meest complexe programma dat
je ooit hebt gezien.
>>>>>>> THEIRS (select with 'tc') (3,2)

<<<<<<< MINE (select with 'mc') (5)
echo "Salut le monde!"

17

Appendix A. SCM Conflict Demonstration Draft

[ITTI] ORIGINAL (5)
echo "Hello World!"

echo "Hallo Wereld!"

>>>>>>> THEIRS (select with 'tc') (6)

Select: (p) postpone, (df) diff-full, (e) edit, (r) resolved,
(mc) mine-conflict, (tc) theirs-conflict,
(s) show all options:

immediately indicating that you can pick your changes over anyone else's with me, or go with
"their" changes (the changes pulled in by svh up) with tc.

Note that the option to pick one changeset over the other changeset with mc or tc
is only available in Subversion 1.6 and above.

o Only in Subversion 1.6+

(mc) mine-conflict

The acronym's meaning doesn't really speak, but you (having made the .mine changes) think
that "they" (with the pulled in changes) conflict with you and so you want to pick your changes
over their changes. Entirely reasonable, but not always appropriate.

(tc) theirs-conflict

Again the acronym's meaning doesn't really speak for itself but in this case you conflict with
them and you think they know better; You accept their changes and throw away your own.

(e) edit
Edit the changes (not just the conflicts). In our example, this would open up $SVN_EDITOR or
$EDITOR and show you the following, in an editor, for you to edit (and write):

#!/bin/bash

<<<<<<< .mine
Je ne parles pas Francais du tout.

Dit is waarschijnlijk het meest complexe programma dat
je ooit hebt gezien.
S>>>>>> 12

<<<<<<< .mine
echo "Salut le monde!"

echo "Hallo Wereld!"
SS>S>>>> [r2

Choose and pick the lines you want to keep, write out the file's new contents, quit the editor
and mark the conflict as resolved. Then, commit the changes (you have actually rebased onto
revision #2, as svn status and svn diff will show you).

18

Draft Draft

Appendix B. Revision History

Revision 1.0

19

Draft Draft

Index

B

branch, vi
merging, Vi
rebasing, vii

C

changeset, v
commit, vi

F

feedback
contact information for this manual, vii

M

merging
branches, vii
conflict, vii
strategy, vii

P

platform
operating system, vii

R

rebasing
branches, vii

S

system
operating system, vii

T

tag, vii

21

	Pragmatic Source Code Management
	Table of Contents
	Preface
	1. Terminology
	1.1. Changeset
	1.2. Commit
	1.3. Branch
	1.3.1. (Feature) Development Branches
	1.3.2. Version Specific Branches
	1.3.3. Platform Specific Branches
	1.3.4. Operating System or Distribution (Version) Specific Branches

	1.4. Tag
	1.5. Merge Conflict
	1.6. Merge Strategy
	1.7. Branch Merge
	1.8. Branch Rebase
	1.9. Operating System

	2. Feedback

	Chapter 1. Introduction
	1.1. About this Document
	1.2. Source Code Management Systems

	Chapter 2. Revision Control
	2.1. Problems with Simplistic Revision Control
	2.1.1. Removing a Single Revision

	2.2. One Development Path

	Chapter 3. Software Development
	3.1. Software Dependencies
	3.2. Software Development in Teams
	3.3. Community and Contributors
	3.3.1. The Demand for Tags and Branches

	3.4. Long Term Source Code Management
	3.5. Changeset Consistency
	3.6. Ever Growing Projects

	Chapter 4. Pragmatic SCM
	4.1. Tags and Branches

	Chapter 5. Example Project: VMime
	5.1. Consumer of VMime
	5.2. Different Versions of VMime
	5.2.1. Upstream Versions
	5.2.2. Zarafa Versions

	5.3. Working Pragmatic SCM Magic

	Appendix A. SCM Conflict Demonstration
	Appendix B. Revision History
	Index

