
Release Engineering 101

HOWTO Create Your
Own Distribution

How to create your own add-on (third party)
repository, (derivative) distribution, or worse

BOOK PUBLISHING TOOL

Jeroen van Meeuwen

HOWTO Create Your Own Distribution

Release Engineering 101 HOWTO Create Your Own Distribution
How to create your own add-on (third party) repository,
(derivative) distribution, or worse
Edition 1

Author Jeroen van Meeuwen jeroen.van.meeuwen@ergo-project.org

Copyright © 2010 Ergo Foundation This material may only be distributed subject to the terms and
conditions set forth in the GNU Free Documentation License (GFDL), V1.2 or later (the latest version
is presently available at http://www.gnu.org/licenses/fdl.txt).

The essentials of Release Engineering.

mailto:jeroen.van.meeuwen@ergo-project.org
http://www.gnu.org/licenses/fdl.txt

iii

Preface v
1. Introduction ... v

1.1. In This HOWTO ... v
2. Document Conventions ... v

2.1. Typographic Conventions .. v
2.2. Pull-quote Conventions .. vii
2.3. Notes and Warnings .. vii

3. We Need Feedback! ... viii

I. Build Systems 1

1. The Koji Build System 3
1.1. About Koji .. 3

1.1.1. CPU Architectures and Base Architectures .. 3
1.1.2. External Repositories ... 3
1.1.3. Using Tags .. 3
1.1.4. Adding Packages .. 3
1.1.5. Adding Users .. 3

1.2. Setting Up Koji ... 3
1.2.1. Prerequisites ... 3
1.2.2. Doing the Work ... 4

1.3. Setup the Koji Build System ... 7
1.4. Koji Setup for Downstream Consumers ... 7

1.4.1. Creating the New Distribution Version FIXME .. 9
1.5. Third Party Add-on Repositories .. 10

1.5.1. Example: Koji for RPM Fusion .. 10
1.5.2. Creating a Custom Repository .. 12
1.5.3. A more sustainable custom repository ... 13
1.5.4. A buildsystem repository for Fedora 12 ... 13

2. The Busby Build System 15

A. Revision History 17

Index 19

iv

v

Preface

1. Introduction
A short overview and summary of the book's subject and purpose, traditionally no more than one
paragraph long. Note: the abstract will appear in the front matter of your book and will also be placed
in the description field of the book's RPM spec file.

1.1. In This HOWTO
In this HOWTO, we will set up and environment that allows you to Create Your Own DistributionTM. All
the way from upstream (non-)source code, to building software packages and enabling those software
packages to be checked in to version control, building the (binary) packages, pushing the packages
out, distributing them through software channels, and what is the work involved.

This HOWTO also describes what exactly is necessary for the upstream distributor to allow a certain
amount of flexibility and efficiency to downstream consumers, whether it be distributors of derivative
distributions, add-on (third party) software distribution channels, or specific consumer needs and
expectations with regards to update policies.

Ergo, this HOWTO includes chapters on the following:

• The upstream software;

• Working with the upstream software as a downstream consumer;

• The distribution software packaging version control system;

• The build system;

• The distribution mechanism;

• The work included;

2. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

2.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the

Copy button. Now switch back to your document and choose Edit → Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

Pull-quote Conventions

vii

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

2.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

2.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Preface

viii

Note
Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a
note should have no negative consequences, but you might miss out on a trick that
makes your life easier.

Important
Important boxes detail things that are easily missed: configuration changes that
only apply to the current session, or services that need restarting before an update
will apply. Ignoring a box labeled 'Important' won't cause data loss but may cause
irritation and frustration.

Warning
Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

3. We Need Feedback!
You should over ride this by creating your own local Feedback.xml file.

Part I. Build Systems

Chapter 1.

3

The Koji Build System
This chapter is about the Koji1 build system suite, the successor of Plague.

Koji is used by, amongst others, the Fedora Project2 and the RPM Fusion3 third-party add-on software
repository for Fedora.

1.1. About Koji
para

1.1.1. CPU Architectures and Base Architectures
i386 for the builders, exactarch for the build tags, basearches for the repositories.

1.1.2. External Repositories
Regenerating the metadata for external repositories

1.1.3. Using Tags
using tags (release, updates & updates-testing and updates-candidate)

1.1.4. Adding Packages
Packages added should not be removed anymore, but in case nothing refers to the package yet, can
be removed but not easily.

1.1.5. Adding Users
In case nothing refers to the package yet, can be removed but not easily.

1.2. Setting Up Koji

1.2.1. Prerequisites
You will need at least the following resources:

• A PostgreSQL database;

• A NFS, SMB or iSCSI with GFS(2) fileserver4;

• A build host (also called koji builder).

1.2.1.1. Performance
We recommend considering the following parameters with regards to the Koji build system
environment:

1 http://fedorahosted.org/koji
2 http://fedoraproject.org
3 http://rpmfusion.org

http://fedorahosted.org/koji
http://fedoraproject.org
http://rpmfusion.org
http://fedorahosted.org/koji
http://fedoraproject.org
http://rpmfusion.org

Chapter 1. The Koji Build System

4

• When using the external repositories feature, please keep in mind the processes triggered with such
usage are memory intensive.

• The storage requirements can grow very quickly, and grows exponentially with the number of builds
required, the number of distribution channels used, the external repository mirroring policy, and so
forth.

Even though we need you to make your own assessment and determine how much flexibility you
require in terms of being able to grow the storage volume used, we can share the storage in use
today by various projects;

• Fedora Project: approximately 2 TB.

• RPM Fusion; 200 GB

• Building software is CPU intensive, and can be memory intensive, but most of all is very I/O
intensive.

1.2.2. Doing the Work
In this section, we are going to setup a bare metal build system environment. See also http://
fedoraproject.org/wiki/Koji/ServerHowTo.

In this manual...
In this manual, we set up Koji with SSL certificate authentication, but another
way for Koji to authenticate users and builders is through Kerberos. Check http://
fedoraproject.org/wiki/Koji/ServerHowTo for more information on the latter.

1. Make sure you've met the prerequisites in Section 1.2.1, “Prerequisites”.

2. In the case of Enterprise Linux 5 build systems, make sure to configure and enable the ergo-el5-
buildsys YUM repository.

3. Create the necessary directories for SSL authentication between build nodes, clients and the hub:

mkdir -p /etc/pki/koji/{certs,private}

4. Create /etc/pki/koji/ssl.cnf with the following content:

HOME = .
RANDFILE = .rand

[ca]
default_ca = ca_default

[ca_default]
dir = .
certs = $dir/certs
crl_dir = $dir/crl
database = $dir/index.txt
new_certs_dir = $dir/newcerts
certificate = $dir/%s_ca_cert.pem
private_key = $dir/private/%s_ca_key.pem
serial = $dir/serial

http://fedoraproject.org/wiki/Koji/ServerHowTo
http://fedoraproject.org/wiki/Koji/ServerHowTo
http://fedoraproject.org/wiki/Koji/ServerHowTo
http://fedoraproject.org/wiki/Koji/ServerHowTo

Doing the Work

5

crl = $dir/crl.pem
x509_extensions = usr_cert
name_opt = ca_default
cert_opt = ca_default
default_days = 3650
default_crl_days = 30
default_md = md5
preserve = no
policy = policy_match

[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]
default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes
x509_extensions = v3_ca # The extentions to add to the self signed cert
string_mask = MASK:0x2002

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = AT
countryName_min = 2
countryName_max = 2
stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Vienna
localityName = Locality Name (eg, city)
localityName_default = Vienna
0.organizationName = Organization Name (eg, company)
0.organizationName_default = My company
organizationalUnitName = Organizational Unit Name (eg, section)
commonName = Common Name (eg, your name or your server\'s hostname)
commonName_max = 64
emailAddress = Email Address
emailAddress_max = 64

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 4
challengePassword_max = 20
unstructuredName = An optional company name

[usr_cert]
basicConstraints = CA:FALSE
nsComment = "OpenSSL Generated Certificate"
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer:always

[v3_ca]
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always,issuer:always
basicConstraints = CA:true

5. Edit /etc/pki/koji/ssl.cnf and update it with your values.

• Set a naming convention

Chapter 1. The Koji Build System

6

• Choose the architectures (per branch)

• Make sure that if you run a local mirror of the Fedora Project, MirrorManager5 knows about it and
points your builders in the right direction.

• Make sure that if you run a local mirror of CentOS, MirrorManager6 knows about it and points your
builders in the right direction.

• Optionally, choose a dist-tag

Using the Koji build system in FIXME, we now enable RPM Fusion to build the packages for their
free and nonfree repositories.

koji add-tag dist-f13-release
koji add-external-repo -t dist-f13-release dist-f13-release http://download.fedoraproject.org/
pub/fedora/linux/development/13/\$arch/os/
koji add-tag --parent dist-f13-release dist-f13-release-override

koji add-tag dist-f13-updates
koji add-external-repo -t dist-f13-updates dist-f13-updates http://download.fedoraproject.org/
pub/fedora/linux/updates/13/\$arch/
koji add-tag --parent dist-f13-updates dist-f13-updates-override

koji add-tag dist-f13-updates-testing
koji add-external-repo -t dist-f13-updates-testing dist-f13-updates-testing http://
download.fedoraproject.org/pub/fedora/linux/updates/testing/13/\$arch/
koji add-tag --parent dist-f13-updates-testing dist-f13-updates-testing-override

koji add-tag --parent dist-f13-updates-override dist-f13-build
koji add-tag-inheritance --priority 1 dist-f13-build dist-f13-release-override
koji add-tag-inheritance --priority 2 dist-f13-build dist-f12-build

koji add-tag --arches="i686 x86_64" --parent dist-f13-build rpmfusion-13-free-build

koji add-tag --arches="i686 x86_64" --parent rpmfusion-f13-free-release rpmfusion-f13-free-
updates
koji add-tag --arches="i686 x86_64" rpmfusion-f13-nonfree-release
koji add-tag --arches="i686 x86_64" --parent rpmfusion-f13-nonfree-release rpmfusion-f13-
nonfree-updates
koji add-tag --arches="i686 x86_64" --parent rpmfusion-f13-free-updates rpmfusion-f13-free-
build
koji add-tag-inheritance --priority=2 rpmfusion-f13-free-build dist-f13-build
koji add-tag --arches="i686 x86_64" --parent rpmfusion-f13-free-updates rpmfusion-f13-nonfree-
build
koji add-tag-inheritance --priority=1 rpmfusion-f13-nonfree-build rpmfusion-f13-nonfree-
updates
koji add-tag-inheritance --priority=2 rpmfusion-f13-nonfree-build dist-f13-build
koji add-tag-inheritance --priority=2 rpmfusion-f13-free-build dist-f13-build
koji add-tag-inheritance rpmfusion-f13-nonfree-release rpmfusion-f12-nonfree-updates
koji add-tag-inheritance --priority=2 rpmfusion-f13-nonfree-build dist-f13-build
koji add-tag --arches="i686 x86_64" --parent rpmfusion-f13-free-updates rpmfusion-f13-free-
updates-candidate
koji add-tag --arches="i686 x86_64" --parent rpmfusion-f13-free-updates rpmfusion-f13-free-
updates-testing
koji add-tag --arches="i686 x86_64" --parent rpmfusion-f13-nonfree-updates rpmfusion-f13-
nonfree-updates-candidate
koji add-tag --arches="i686 x86_64" --parent rpmfusion-f13-nonfree-updates rpmfusion-f13-
nonfree-updates-testing
koji add-target rpmfusion-f13-free-release rpmfusion-f13-free-build rpmfusion-f13-free-release
koji add-target rpmfusion-f13-nonfree-release rpmfusion-f13-nonfree-build rpmfusion-f13-
nonfree-release

https://admin.fedoraproject.org/mirrormanager/
https://admin.centos.org/mirrormanager/

Setup the Koji Build System

7

koji add-target rpmfusion-f13-free-updates rpmfusion-f13-free-build rpmfusion-f13-free-
updates-candidate
koji add-target rpmfusion-f13-nonfree-updates rpmfusion-f13-nonfree-build rpmfusion-f13-
nonfree-updates-candidate

1.3. Setup the Koji Build System
In this section, we'll initialize the Koji build system to start out with nothing but existing RPM packages.

See the other Setup sections
This section is not suitable for downstream consumers desiring to fork, override,
re-compile, add-on software to an existing Linux distribution or software repository.
Please see the other sections if you are not creating your own Linux distribution from
scratch.

Procedure 1.1. Starting from Scratch
1. Create the -release tag, and prefix it with devel-.

2. Create the -release-candidate tag, again prefixing it with devel-.

3. Create the -build tag, again prefixing it with devel-

4. Create the build and srpm-build groups.

5. Add the packages to the groups mentioned in step #4, including all of their dependencies (minimal
build root)

6. Create the build target and prefix it with devel-

1.4. Koji Setup for Downstream Consumers
In this section, we'll set up the skeleton of a Koji build system using external repositories. Please read
through the other sections as well, which explain how to set up Koji for different purposes. Yet, this
type of skeleton setup enables you to use and reuse readily available software packages, yet allows
for a certain amount of flexibility downstream –that is if you set it up right. This functionality is ideal for
several intended and/or unintended purposes, including:

• Building your own software packages on top of the set of software packages available, making
available extra software while not changing anything to the distribution;

• Building newer versions of software packages to be used instead of the software packages available
from upstream, also known as fast-tracking. For instance, compiling php-5.2.x for Enterprise Linux 5
would be considered fast-tracking;

• Rebuild the software packages available from upstream differently hence creating a different version
of the same package, possibly with a different name, a different set of compilation options, or
against a different version of a build requirement.

• Rebuild the software packages available from upstream as-is, for either of several purposes;

• For fun, or to learn from the experience;

Chapter 1. The Koji Build System

8

• Proof of Concept

• Quality Assurance, including Fails To Build From Source, or FTBFS.

• Security

• Verification

• Building packages in development for the current release, such as a new package to be included in
the distribution, such as software packages not yet accepted by the review process;

• Building packages for (future) feature development purposes, based on the current release, so
that the resulting packages may be installed by users running a stable base operating system. For
instance, building ruby-1.9.1 for Fedora 12;

• Building packages for future releases, way beyond what could be done within the current
development environment of the distribution. This includes, for example, re-building all software
packages against gcc-4.4 FIXME;

• rebuild packages possibly with extra patches or different options relevant to how the software
compiles (ranging from ./configure --with or ./configure --without to %patch1000)

• fork an existing distribution and not have to redo all the work.

Procedure 1.2. Initialize a Koji Build System Environment with External Repositories
1. Create the distribution tags to represent the external repositories used. In this example, we use

the dist prefix for the tag name to indicate it is a (complete) distribution, the f11 to indicate it
is Fedora 117, and the -release8, -updates and -updates-testing suffices to indicate the
upstream software distribution channel (or repository).

koji add-tag dist-f11-release
koji add-external-repo \
 -t dist-f11-release dist-f11-release \
 http://download.fedoraproject.org/pub/fedora/linux/releases/11/Everything/\$arch/os/

koji add-tag dist-f11-updates
koji add-external-repo \
 -t dist-f11-updates dist-f11-updates \
 http://download.fedoraproject.org/pub/fedora/linux/updates/11/\$arch/

koji add-tag dist-f11-updates-testing
koji add-external-repo \
 -t dist-f11-updates-testing dist-f11-updates-testing \
 http://download.fedoraproject.org/pub/fedora/linux/updates/testing/11/\$arch/

2. In order to allow you to override what is available from the external repositories, create override
tags for each of the distribution tags:

koji add-tag --parent dist-f11-release dist-f11-release-override
koji add-tag --parent dist-f11-updates dist-f11-updates-override
koji add-tag --parent dist-f11-updates-testing dist-f11-updates-testing-override

This may seem unnecessary, but rest assured you will need them later on.

Creating the New Distribution Version FIXME

9

3. Now, create a build tag that uses the -updates-override and -release-override
distribution tags, in that order:

koji add-tag --arches="i586 x86_64" --parent=dist-f11-updates-override dist-f11-build
koji add-tag-inheritance --priority 1 dist-f11-build dist-f11-release-override

The Inheritance is Important
The aforementioned inheritance is important. Much like with a consuming
(end-user) system using yum-plugin-priorities or yum-priorities, the priority
attached to the inheritance of tags tells the build system which external repository
has the upper hand when building packages using these external repositories.

4. Now that the build tag exists, create two build groups in the build tag: build and srpm-build.
Then, associate some packages with it (relating to the minimal buildroot):

koji add-group dist-f11-build build
koji add-group-pkg dist-f11-build build \
 bash bzip2 coreutils cpio \
 diffutils findutils gawk gcc \
 gcc-c++ grep gzip info \
 make patch redhat-rpm-config rpm-build \
 sed shadow-utils tar unzip \
 util-linux-ng which

koji add-group dist-f11-build srpm-build
koji add-group-pkg dist-f11-build srpm-build \
 bash curl cvs gnupg \
 make redhat-rpm-config rpm-build shadow-utils

Not Included In The Build Groups
Not included in the build groups is the package fedora-release. This is on
purpose, as you may have suspected already. The fedora-release package
distributes /etc/rpm/macros.dist which can be used in many cases (such
as genuine add-on repositories), but sometimes just doesn't apply (such as
fasttrack repositories). The %{dist} tag makes the %{release} unique across
Koji tags. Hence, we add this package to the appropriate group later on.

Congratulations, you now have the skeleton of a Koji build system environment with external
repositories for Fedora 11. But you cannot yet build anything ;-)

1.4.1. Creating the New Distribution Version FIXME
Fedora 11 doesn't last forever.

1. Create the -release, -updates and -updates-testing distribution tags as you would
creating the skeleton of a new Koji build system environment setup:

koji add-tag dist-f12-release
koji add-external-repo -t dist-f12-release dist-f12-release \
 http://download.fedoraproject.org/pub/fedora/linux/releases/12/Everything/\$arch/os/

Chapter 1. The Koji Build System

10

koji add-tag --parent dist-f12-release dist-f12-release-override

koji add-tag dist-f12-updates
koji add-external-repo -t dist-f12-updates dist-f12-updates \
 http://download.fedoraproject.org/pub/fedora/linux/updates/12/\$arch/

koji add-tag --parent dist-f12-updates dist-f12-updates-override

koji add-tag dist-f12-updates-testing
koji add-external-repo -t dist-f12-updates-testing dist-f12-updates-testing \
 http://download.fedoraproject.org/pub/fedora/linux/updates/testing/12/\$arch/

koji add-tag --parent dist-f12-updates-testing dist-f12-updates-testing-override

2. Now, add the -build inheriting the -release-override and -updates-override

koji add-tag --arches="i686 x86_64" --parent dist-f12-updates-override dist-f12-build
koji add-tag-inheritance --priority 1 dist-f12-build dist-f12-release-override

3. As an extra step, inherit the dist-f11-build tag.

koji add-tag-inheritance --maxdepth 1 --priority 2 dist-f12-build dist-f11-build

If you set up the tags as described above, the dist-f12-build build tag now inherits the build
groups from the dist-f11-build build tag. It also inherits the -release-override and -
updates-override tags from dist-f11, so blocked packages remain blocked. If you want a
blocked package from dist-f11 to still appear in dist-f12, you can unblock the package. Same
goes for the ownership of a package (someone other then the owner in dist-f11 may be the owner
of the package in dist-f12) FIXME.

1.5. Third Party Add-on Repositories
In this section, we describe the way to add tags and targets to the Koji environment set up in
Section 1.4, “Koji Setup for Downstream Consumers”. We'll include some examples, too, such as the
one in Section 1.5.1, “Example: Koji for RPM Fusion”.

1.5.1. Example: Koji for RPM Fusion
RPM Fusion is the primary third party add-on repository for users of Fedora. It is also one of the most
used third party add-on repository for Red Hat Enterprise Linux, Scientific Linux and CentOS users.

Procedure 1.3. Setup the Koji Build System for RPM Fusion
1. First, create a -release and -updates tags for the free repository, and the corresponding -

override tags:

koji add-tag rpmfusion-f11-free-release
koji add-tag --parent rpmfusion-f11-free-release \
 rpmfusion-f11-free-release-override

koji add-tag --parent rpmfusion-f11-free-release-override \
 rpmfusion-f11-free-updates

koji add-tag --parent rpmfusion-f11-free-updates \

Example: Koji for RPM Fusion

11

 rpmfusion-f11-free-updates-override

2. Create the -build tag for the free repository, inheriting both -updates-override and -
release-override, in that order:

koji add-tag --arches="i586 x86_64" --parent rpmfusion-f11-free-updates-override \
 rpmfusion-11-free-build

koji add-tag-inheritance --priority=1 \
 rpmfusion-f11-free-build dist-f11-build

3. Now, create the -updates-candidate and -updates-testing tags:

koji add-tag --parent rpmfusion-f11-free-updates \
 rpmfusion-f11-free-updates-candidate

koji add-tag --parent rpmfusion-f11-free-updates \
 rpmfusion-f11-free-updates-testing

4. We are going to repeat Step 1, Step 2 and Step 3 for the nonfree repository, but the nonfree
repository requires a slightly different approach since it inherits the free repository:

koji add-tag rpmfusion-f11-nonfree-release
koji add-tag --parent rpmfusion-f11-nonfree-release \
 rpmfusion-f11-nonfree-release-override

koji add-tag --parent rpmfusion-f11-nonfree-release-override \
 rpmfusion-f11-nonfree-updates

koji add-tag --parent rpmfusion-f11-nonfree-updates \
 rpmfusion-f11-nonfree-updates-override

5. Since the software packages in nonfree can have build requirements that are in the free
repository, we add the -free-updates-override tag as the parent with the highest priority to
the -nonfree-build build tag:

koji add-tag --arches="i586 x86_64" --parent rpmfusion-f11-free-updates-override \
 rpmfusion-11-nonfree-build

6. The -nonfree-build build tag also inherits the updates built and released for the nonfree
repository, through the -nonfree-updates-override tag:

koji add-tag-inheritance --priority=1 rpmfusion-f11-nonfree-build \
 rpmfusion-f11-nonfree-updates-override

7. The -nonfree-build build tag also inherits the dist-f11-build build tag, from where it gets
the settings to populate the build root:

koji add-tag-inheritance --priority=2 rpmfusion-f11-nonfree-build \
 dist-f11-build

8. Finally, create the -updates-candidate and -updates-testing tags for the nonfree
repository:

Chapter 1. The Koji Build System

12

koji add-tag --parent rpmfusion-f11-nonfree-updates \
 rpmfusion-f11-nonfree-updates-candidate

koji add-tag --parent rpmfusion-f11-nonfree-updates \
 rpmfusion-f11-nonfree-updates-testing

9. Now, in order to be able to build anything, we need build targets:

koji add-target rpmfusion-f11-free-release \
 rpmfusion-f11-free-build rpmfusion-f11-free-release

koji add-target rpmfusion-f11-nonfree-release \
 rpmfusion-f11-nonfree-build rpmfusion-f11-nonfree-release

koji add-target rpmfusion-f11-free-updates rpmfusion-f11-free-build \
 rpmfusion-f11-free-updates-candidate

koji add-target rpmfusion-f11-nonfree-updates rpmfusion-f11-nonfree-build \
 rpmfusion-f11-nonfree-updates-candidate

1.5.2. Creating a Custom Repository
This is supposed to be a quick-and-fast repository that adds to the Fedora releases it is supposed to
be configured on.

Procedure 1.4. A simple, fast custom repository
1. koji add-tag custom-f11-ruby

koji add-tag --arches="i586 x86_64" --parent=custom-f11-ruby custom-f11-ruby-build
koji add-tag-inheritance --priority=1 custom-f11-ruby-build dist-f11-build

We now have a simple build tag that inherits most of the settings from the base dist-f11-
build tag.

2. However, we do not have a dist-tag yet. Therefor, we add the fedora-release package to the
build and srpm-build groups. In this particular instance (custom-f11-build) we require no
distinguishing dist-tag from other packages.

koji add-group-pkg custom-f11-ruby-build build fedora-release
koji add-group-pkg custom-f11-ruby-build srpm-build fedora-release

Note how it is in the downstream repository build tag we add the fedora-release package to
groups build and srpm-build.

3. Add the build target:

koji add-target custom-f11-ruby custom-f11-ruby-build custom-f11-ruby

4. koji add-tag --parent custom-f11-ruby custom-f12-ruby
koji add-tag --arches="i686 x86_64" --parent=custom-f12-ruby custom-f12-ruby-build
koji add-tag-inheritance --priority=1 custom-f12-ruby-build dist-f12-build
koji add-tag-inheritance --priority=2 --maxdepth=1 custom-f12-ruby-build custom-f11-ruby-
build

A more sustainable custom repository

13

5. koji add-target custom-f12-ruby custom-f12-ruby-build custom-f12-ruby

6. koji add-pkg --owner=jmeeuwen custom-f11-ruby rubygem-passenger

1.5.3. A more sustainable custom repository
This repository has to last for a little while, and so we make it just a little more sustainable

koji add-tag custom-el5-ruby
koji add-tag --parent custom-el5-ruby custom-el5-ruby-updates
koji add-tag --parent custom-el5-ruby-updates custom-el5-ruby-updates-candidate
koji add-tag --parent custom-el5-ruby-updates custom-el5-ruby-updates-testing

koji add-tag --arches="i386 x86_64" --parent=custom-el5-ruby-updates custom-el5-ruby-build
koji add-tag-inheritance --priority=1 custom-el5-ruby-build dist-el5-build

koji add-group-pkg custom-el5-ruby-build build epel-release
koji add-group-pkg custom-el5-ruby-build srpm-build epel-release

koji add-target custom-el5-ruby-updates-candidate custom-el5-ruby-build custom-el5-ruby-
updates-candidate

koji add-tag custom-el5-buildsys
koji add-tag --parent custom-el5-buildsys custom-el5-buildsys-updates
koji add-tag --parent custom-el5-buildsys-updates custom-el5-buildsys-updates-candidate
koji add-tag --parent custom-el5-buildsys-updates custom-el5-buildsys-updates-testing

koji add-tag --arches="i386 x86_64" --parent=custom-el5-buildsys-updates custom-el5-buildsys-
build
koji add-tag-inheritance --priority=1 custom-el5-buildsys-build dist-el5-build

koji add-group-pkg custom-el5-buildsys-build build epel-release
koji add-group-pkg custom-el5-buildsys-build srpm-build epel-release

koji add-target custom-el5-ruby-updates-candidate custom-el5-ruby-build custom-el5-ruby-
updates-candidate

1.5.4. A buildsystem repository for Fedora 12

[jmeeuwen@ghandalf SPECS]$ koji add-tag custom-f12-buildsys
[jmeeuwen@ghandalf SPECS]$ koji add-tag --arches="i686 x86_64" --parent custom-f12-buildsys
 custom-f12-buildsys-build
[jmeeuwen@ghandalf SPECS]$ koji add-tag-inheritance --priority=1 custom-f12-buildsys-build
 dist-f12-build
[jmeeuwen@ghandalf SPECS]$ koji add-group-pkg custom-f12-buildsys-build build buildsys-macros
[jmeeuwen@ghandalf SPECS]$ koji add-group-pkg custom-f12-buildsys-build srpm-build buildsys-
macros
[jmeeuwen@ghandalf SPECS]$ koji add-pkg --owner=jmeeuwen custom-f12-buildsys buildsys-macros
[jmeeuwen@ghandalf SPECS]$ koji add-target custom-f12-buildsys custom-f12-buildsys-build
 custom-f12-buildsys

14

Chapter 2.

15

The Busby Build System
Upstream software projects answer to a greater audience of which you are just a small part.

16

17

Appendix A. Revision History
Revision 0 Mon Mar 22 2010 Dude McPants Dude.McPants@example.com

Initial creation of book by publican

mailto:Dude.McPants@example.com

18

19

Index
F
feedback

contact information for this manual, viii

20

	HOWTO Create Your Own Distribution
	Table of Contents
	Preface
	1. Introduction
	1.1. In This HOWTO

	2. Document Conventions
	2.1. Typographic Conventions
	2.2. Pull-quote Conventions
	2.3. Notes and Warnings

	3. We Need Feedback!

	Part I. Build Systems
	Chapter 1. The Koji Build System
	1.1. About Koji
	1.1.1. CPU Architectures and Base Architectures
	1.1.2. External Repositories
	1.1.3. Using Tags
	1.1.4. Adding Packages
	1.1.5. Adding Users

	1.2. Setting Up Koji
	1.2.1. Prerequisites
	1.2.1.1. Performance

	1.2.2. Doing the Work

	1.3. Setup the Koji Build System
	1.4. Koji Setup for Downstream Consumers
	1.4.1. Creating the New Distribution Version FIXME

	1.5. Third Party Add-on Repositories
	1.5.1. Example: Koji for RPM Fusion
	1.5.2. Creating a Custom Repository
	1.5.3. A more sustainable custom repository
	1.5.4. A buildsystem repository for Fedora 12

	Chapter 2. The Busby Build System

	Appendix A. Revision History
	Index

