
Revisor 2.1

Reference
Revisor Complete Installation,

Configuration and Tweaking Reference

BOOK PUBLISHING TOOL

Jeroen van Meeuwen, RHCE

Reference Draft

Revisor 2.1 Reference
Revisor Complete Installation, Configuration and Tweaking
Reference
Edition 0

Author Jeroen van Meeuwen, RHCE kanarip@fedoraunity.org
Copyright © 2007 - 2009 Jeroen van Meeuwen

Copyright © 2007 - 2009 Jeroen van Meeuwen This material may only be distributed subject to the
terms and conditions set forth in the GNU Free Documentation License (GFDL), V1.2 or later (the
latest version is presently available at http://www.gnu.org/licenses/fdl.txt).

This is Revisors upstream documentation.

mailto:kanarip@fedoraunity.org
http://www.gnu.org/licenses/fdl.txt

Draft Draft

iii

Preface vii
1. About the Contributors ... vii
2. About Fedora Unity .. vii
3. About this Document ... vii
4. Document Conventions ... viii

4.1. Typographic Conventions ... viii
4.2. Pull-quote Conventions .. ix
4.3. Notes and Warnings ... x

5. We Need Feedback! ... x

1. Introduction 1
1.1. History of Revisor .. 1
1.2. The Installation Media Challenge .. 2
1.3. The Live Media Challenge .. 3

2. Features 5
2.1. Installation Media ... 5
2.2. Installation Trees .. 5
2.3. Live Media ... 5
2.4. Reproducibility .. 5
2.5. Consistency ... 5
2.6. Flexibility .. 6
2.7. Graphical User Interface ... 6
2.8. Open Development Community ... 6
2.9. Plugin System .. 6
2.10. Extraneous Debugging ... 6
2.11. Smart Caching ... 6
2.12. Using YUM Configuration Files ... 7

I. Getting Started 9

3. Installation 11
3.1. Packages ... 11

3.1.1. Red Hat Enterprise Linux 5 or higher .. 11
3.1.2. Fedora 7 or higher ... 11

3.2. The Latest and Greatest ... 12

4. Configuration 13
4.1. Configuration Files .. 13

4.1.1. /etc/revisor/revisor.conf ... 13
4.1.2. /etc/revisor/conf.d/ ... 14
4.1.3. Updates to Configuration Files .. 14
4.1.4. Changing Configuration Files .. 14

4.2. Global and Model Configuration .. 14
4.3. YUM Repository Configuration .. 15

4.3.1. $releasever and $basearch .. 15
4.3.2. Using a Local Mirror .. 15
4.3.3. Using Local Files ... 16
4.3.4. Using a DVD ... 16
4.3.5. Adding Third Party Repositories ... 16
4.3.6. Creating Your Own Repository ... 16
4.3.7. Testing & Troubleshooting the YUM Configuration 17

4.4. Configuring A Proxy Server ... 17
4.5. Command-line Options ... 17

5. Quick Start 19

Reference Draft

iv

II. Manual 23

6. HOWTO 25
6.1. HOWTO: Add a Third Party Repository ... 25
6.2. HOWTO: Create a Re-Spin ... 25
6.3. HOWTO: Include folders and files on the Media ... 25
6.4. HOWTO: Re-use Installer Images ... 25

7. Using Kickstart 27
7.1. How Kickstart Is Used .. 27

7.1.1. Installation Media ... 27
7.2. The Kickstart Package Manifest .. 27

7.2.1. Using Kickstart with Package NEVRA ... 28

III. Reference 29

8. Compose Process Details 31
8.1. Overview .. 31
8.2. Installation Media ... 31
8.3. Live Media ... 32
8.4. Respin Mode .. 32

8.4.1. Selecting Groups ... 33
8.4.2. Select Matching Packages ... 33

8.5. Dependency Resolving ... 33
8.5.1. Inclusive Dependency Resolving ... 34
8.5.2. Exclusive Dependency Resolving ... 35

8.6. Copying Arbitrary Files Onto the Media ... 35
8.7. Cleaning Up ... 36

8.7.1. Exception to the Rule .. 36

9. Plugins 37
9.1. Upstream Plugins ... 37

9.1.1. Cobbler Plugin ... 37
9.1.2. Composer Plugin ... 37
9.1.3. Delta Plugin .. 37
9.1.4. GUI (Graphical User Interface) Plugin ... 37
9.1.5. HUB Plugin ... 37
9.1.6. Isolinux Plugin ... 37
9.1.7. Jigdo Plugin .. 38
9.1.8. Mock Plugin .. 38
9.1.9. Rebrand Plugin .. 38
9.1.10. Reuse Installer Images Plugin .. 38
9.1.11. Server Plugin ... 38
9.1.12. Virtualization Plugin .. 38
9.1.13. WUI (Web-based User Interface) Plugin .. 38

9.2. Writing Your Own Plugins ... 38

10. Tweaking the build process 39
10.1. Reusing Existing Installer Images .. 39
10.2. Building The Installer Images in Mock .. 39
10.3. Omitting isomd5sums .. 39
10.4. Omitting SHA1SUMS .. 39

11. Tips and Tricks 41
11.1. The spin-kickstarts Package .. 41
11.2. Even More Debugging .. 41

Draft

v

11.3. Kickstart Validator ... 41
11.4. Using Mirrormanager for Mirror Redirection .. 41
11.5. Using The localrepo DNS Alias ... 41

12. Frequently Asked Questions 43

13. Testing 45
13.1. Simple Test Cases ... 45

13.1.1. Packages .. 45
13.1.2. Configuration Files ... 45
13.1.3. Requirements for Compose Results .. 46

13.2. Complex Test Cases .. 46
13.3. Specific Test Cases .. 46

14. Development 47
14.1. Running Revisor from Source ... 47

14.1.1. Installing the Required Packages .. 48
14.2. Building Revisor Packages .. 48
14.3. Tickets ... 48
14.4. Adding a new spin or remix .. 48
14.5. Versioning Schema ... 49
14.6. Release Procedure ... 49

A. Revision History 51

Index 53

IV. Appendices 55

A. Terminology 57

B. Configuration Reference 59
B.1. Configuration Options ... 59

vi

Draft Draft

vii

Preface
This is the documentation for Revisor, a utility to create and customize your own Linux distribution
based on Fedora, Red Hat Enterprise Linux or CentOS. This is also known as a Remix, or Re-Spin, or
Re-Master. You may create anything you want with Revisor no matter what it's called though.

1. About the Contributors

Author
Jeroen van Meeuwen (RHCE, LPIC-2, MCP, CCNA) is currently a Senior System Engineer,
specialized in Linux systems and Systems Architecture, working for Operator Groep Delft in The
Netherlands. His experience with computers goes back to the early '90s, with a Philips P2000T being
over a decade old, little tapes containing programs but most importantly games, and 16K memory
cartridges. Since 1998, he has been involved with Red Hat Linux (5.2 at that time), and was an early
adopter of Fedora Core Linux in November 2003, until his first real contributions to Free and Open
Source Software were made in 2005.

As a contributor to Free and Open Source Software within the Fedora community, amongst other
programs, Jeroen has developed Revisor, a Python framework to build distributions with. With regards
to Configuration Management, Jeroen currently maintains or co-maintains -amongst other packages-
the entire stack of packages related to Puppet

Contributors
Jonathan Steffan is a community volunteer based in Colorado, USA, and has a long standing
record within Fedora for packaging Zope (Web Application Server), Plone (Open Source Content
Management System), providing compat-python2.4 packages through Livna1 and RPMFusion2 ever
since Fedora 7, and voluntarily administering the Fedora Unity servers, Zope and Plone instances,
creating and further developing Revisor and pyJigdo, amongst many other things.

2. About Fedora Unity
The Fedora Unity Project consists of a group of concerned peers from within the Fedora community
that strive to bring the best possible solutions to the community, in a consistent manner. This, amongst
other things, resulted in extensive documentation on various topics often referred to on the Web,
published under the Open Documentation License v1.0.

The Fedora Unity Project is a different project then the official Fedora Project. The people behind
the Fedora Unity Project often contribute to the Fedora Project directly as well, but there's little to no
bureaucracy in the Fedora Unity Project. Why do you think these Re-Spins are not released by the
Fedora Project itself?

3. About this Document
This document is licensed under the Open Publication License version 1.0, which is available at http://
www.opencontent.org/openpub/. You can get the latest version from http://kanarip.fedorapeople.org/

1 Livna (http://livna.org) merged into RPMFusion after having offered numerous free and non-free packages through a third-
party repository
2 RPMFusion (http://rpmfusion.org) is the best & largest third-party addon repository to Fedora and Enterprise Linux, with free
and nonfree packages

http://www.opencontent.org/openpub/
http://www.opencontent.org/openpub/
http://kanarip.fedorapeople.org/Revisor_Reference_Manual/en-US/pdf/Revisor_Reference_Manual.pdf
http://livna.org
http://rpmfusion.org

Preface Draft

viii

Revisor_Reference_Manual/en-US/pdf/Revisor_Reference_Manual.pdf (PDF), and it's sources live at
http://git.fedorahosted.org/git/?p=revisor;a=tree;f=doc.

4. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts3 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

4.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click

3 https://fedorahosted.org/liberation-fonts/

http://kanarip.fedorapeople.org/Revisor_Reference_Manual/en-US/pdf/Revisor_Reference_Manual.pdf
http://git.fedorahosted.org/git/?p=revisor;a=tree;f=doc
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Draft Pull-quote Conventions

ix

Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from
the Character Map menu bar, type the name of the character in the Search field
and click Next. The character you sought will be highlighted in the Character Table.
Double-click this highlighted character to place it in the Text to copy field and then

click the Copy button. Now switch back to your document and choose Edit → Paste
from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

4.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

Preface Draft

x

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

4.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

5. We Need Feedback!
You should over ride this by creating your own local Feedback.xml file.

Draft Chapter 1. Draft

1

Introduction
Revisor is a community product by Fedora Unity. Amongst other features, it allows the creation of
installation media and live media in the easiest possible manner, through a click-and-go GUI. This
chapter gives some insight on how and why Revisor was born, and how the product evolved since.

1.1. History of Revisor
Revisor development started in December 2006, during the Fedora 7 development cycle, in which -as
you might recall- the Fedora Core repository, maintained by Red Hat, and Fedora Extras repository,
mostly maintained by the community, were merged into one large repository being maintained by
both community members as well as Red Hat employees -which are mostly community members who
just so happen to be hired by Red Hat, so community altogether. Before then Red Hat employees
maintained Fedora Core -as the set of packages upstream for Red Hat's Enterprise product- and
the community maintained a repository with additional software; Fedora Extras. Red Hat composed
the Fedora distribution every once in a while, but the merge introduced the possibility for packages
that were in Fedora Extras to be included in the main distribution, and for the community to also
(co-)maintain the (former) Fedora Core packages that originally made up the distribution.

In addition to this huge merge of packages, Red Hat employees were also able to release the entire
build process to the community, meaning that from the moment the source is committed up and
until the release is announced, the entire process is open. Not that is was all behind closed doors or
proprietary or anything, the community just couldn't really play with it as much. We now have koji (build
system), mash (repository compose from build system products), bodhi (updates release system),
livecd-tools (compose tool for live media) and pungi (compose tool for installation media).

Composing the distribution's media
Composing media was an obscure process up and until the moment these tools exposed the best
way to compose (a set of) installation media. Fedora Unity had been building and releasing so-called
Re-Spins1 regularly, but they were built using a not-so-very intelligent bash script. Like hundreds if
not thousands of other parties that needed to build their own media one way or the other, the entire
process was based on the best educated guess of what should happen. Luckily, in the FOSS world an
educated guess is often a very good guess, despite the fact that one keeps learning even years after
the original engagement.

When in December 2006 the compose tools hit a stage in which they were released to the public,
Fedora Unity was eager to get these tools and study them and use them for composing their Re-
Spins. Up and until then, Re-Spins were composed with the aforementioned bash script that didn't
do much but trigger the appropriate commands in a sequence; There wasn't any dependency
resolving between the packages included nor did we know exactly how a release was supposed to be
composed -it was our educated guess of how it could happen. Although it often led to success, we've
had many, many failed Re-Spins as well. With a handful of volunteers, you can imagine the amount of
frustration that might give. Fedora Unity was eager to improve their Re-Spin process.

Fedora Unity's engagement
So, early February 2007, a number of Fedora Unity members attended “FUDCon 2007” in Boston,
and presented a working GUI front-end to both livecd-tools and pungi enabling regular users to also
re-compose or re-spin the installation media and live media they had been getting from the Fedora
Project. Revisor at this point just made it “as easy as possible”. Besides the possibilities of pungi and
livecd-tools themselves, the wizard Revisor had apparently was very, very useful to mere mortals.
From that point on, things took off.

Chapter 1. Introduction Draft

2

Fedora Unity decided Revisor could accomplish more then just being a front-end to existing compose
tools and enable someone to tweak a lot of settings as well. In March 2007, Revisor was rebuilt from
the ground up in order to allow a more flexible process, neing more dependent on the configuration
directives it was given from configuration files, command-line parameters and the graphical user
interface, and less so on the processes of the existing tools. When in San Diego at the Red Hat
Summit (early May 2007), Robert 'Bob' Jensen and Jonathan Steffan gave a presentation on
“Customizing Fedora”, the responses were amazing. Since then Revisor has evolved from a front-end
to existing tools to the complete compose tool it is today, with lots of configuration options for specific
use-cases.

For users, Revisor is particularly useful because it has a GUI front-end wizard, which, with the defaults
settings, will just succeed in getting a user the media he/she wants. If a user decides he needs little
adjustment of the media, the GUI allows for selecting the most common options. If a user decides he
needs some less common adjustments, the configuration options gives him very granular control -
and as long as the documentation on all the options is sufficient, users will be able to make those less
common adjustments.

For administrators on the other hand, Revisor is the tool that gives so much granular control over what
happens, that it can serve almost every specific use-case. In this aspect, Revisor could potentially
replace the compose tools administrators have been developing themselves with a consistent and
flexible program flow.

This document should enable you to study the process of composing installation and live media, and
comprehend the logic Revisor adds to that process.

1.2. The Installation Media Challenge
When Fedora Unity first started doing these so-called Re-Spins, the challenge ahead could maybe be
explained like this:

When a user downloads a Fedora release and installs the distribution, the user will need to download
and install a number of updates. The “older” the release becomes, the more updates will be available,
and the greater the total download size of these updates the user will need to download on top of the
download size of the original release media.

“older” is in quotes on purpose, because really for an operating system -or “distribution” if you will-
being released every 6 months, “old” is quite a relative concept. The number of updates available
however, at any given time during the release cycle, may range from 0 right after the release (which
has never happened before), to the total amount of packages installed on the user's system (often
over 2000). You can imagine the size of these updates ranging from 0 MB to an astonishing 2GB(!),
only 6 months after the initial release. A single Fedora release has a support cycle of 13 months.

Some of us do not have the bandwidth capacity or enough data transfer quota to download this many
extra, rather useless bits. In addition, some of us do not have an Internet connection at all, and those
benefit from getting the updates through Re-Spins as well.

The use of updates in Re-Spins has several more beneficial side-effects, which we'll explain in more
detail later on in this document. Long story short; If for some reason the software used to compose the
media (the release) with does not work for your hardware or your specific needs, updated software
incorporated in the composed installer images might resolve that problem.

This is the original challenge the Fedora Unity team resolved a long time ago, and is at the base of
what Revisor does nowadays.

Draft The Live Media Challenge

3

1.3. The Live Media Challenge
Back in the day Fedora Core 5 was the most recent release, Fedora Unity created so-called live media
using Kadischi, then actively developed by Jasper Hartline, another valued Fedora Unity member. In
those days, live media could only have a read-only root file system and was not as feature-rich as live
media is today. However, just before Revisor came to life, two applications were developed; pungi
for creating installation media, and livecd-tools for creating live media. These two applications did
their work well; The media composed for a genuine Fedora release, including many different custom
live media spins were, and still are, created with these tools, not to mention the many downstream
consumers that use these tools to do the exact same thing. Immediately, the Revisor developers
set themselves a target to provide a single interface to both of those tools, and give the user more
flexibility so that the user could bend the rules without breaking them.

4

Draft Chapter 2. Draft

5

Features
Revisor allows you to build and customize your own Remix, Re-Spin, Spin or even your own
distribution, based on Fedora and derivative distributions such as Red Hat Enterprise Linux and
CentOS.

Revisor builds installation media, live media, installation trees, cobbler distro's and profiles,
virtualization images and more. We'll now briefly explain what each of these terms mean and what
Revisor can (or cannot) do for you.

2.1. Installation Media
Installation media is what you normally use to install a system with. The installation media composed
will allow you to go through the installation process, answering a number of questions (either manually
or through kickstart), and ends up in a system running the distribution you install.

Composing installation media using the Revisor GUI allows you to choose the media (CD, or DVD),
the packages to be included on the media (also called RPM payload).

Using the command-line interface, Revisor also allows you to choose DVD Duallayer and single- or
dual-layer Bluray.

2.2. Installation Trees
Installation trees are typically used in environments where a distribution needs to be deployed over
multiple systems, or is very volatile. Installation trees are often made accessible through HTTP or FTP
protocols, in one place, and do not have as much overhead (in creating .iso files, and burning those to
optical media to distribute them).

2.3. Live Media
Live media often is a perfect showcase for an Operating system, Desktop Environment or any other
thing you want to show. Also, since Live media is read-only, live media perfectly allows for a kiosk
system, a system that may change while it's running, but restores all original settings when rebooted.

Live media is also installable. You start out with a system and boot it from live media, then choose to
install the live media. This however is inferior to real installation media, but is convenient if you happen
to like what you see when running from live media.

2.4. Reproducibility
Media composed with Revisor is extremely reproducible. Using kickstart_exact_nevra, you can
even select specific versions of packages to be included on the product.

2.5. Consistency
When composing different types of media, such as CDs and DVDs, Revisor composes these discs
in one run, making the different media completely consistent. pungi would require you to run twice,
once for CDs, and once for DVDs. This is because pungi uses the part / <size> kickstart
configuration directive to set the maximum size of the media, and has no option to override the size on
the command-line, nor to compose a certain set of media (it all depends on the size).

Chapter 2. Features Draft

6

2.6. Flexibility
Over the years, Revisor has been adopted to serve a large number of use-cases, where use-
cases stretch from media being composed as efficient as possible, as robust as possible, specific
deployment needs and expectations, and to match the Fedora Project Release Engineering tools'
behaviour. All this allows you to configure a lot, and thus customize a lot, making Revisor more of a
flexible framework.

2.7. Graphical User Interface
Revisor has a Graphical User Interface or GUI, in addition to the Command Line Interface or CLI,
which makes Revisor more accessible to users then the other tools, which are CLI only. Most people
only know of Revisor through the GUI, and may think there is no CLI to Revisor. Only when it comes
down to many of the additional features that Revisor has, and that do not fit in a simplified GUI, one
gets down with it using the CLI.

2.8. Open Development Community
Revisor has one of those old-fashioned Free and Open Source Software development communities,
allowing anyone to make a contribution to Revisor. In fact, Revisor has not bounced a single patch
since the project started. Therefor, it improves faster then any of the other compose tools, and is better
adaptible to your needs and expectations, because unlike the other utilities, Revisor is not limited to
use-cases that apply to Fedora Project Release Engineering.

2.9. Plugin System
Revisor has a plugin system so that you can easily extend Revisor. This plugin system gives you full
control over the Revisor procedures, and hands you off anything Revisor knows about the compose
process. There's are multiple plugins available from upstream as well. To give you an example, the
ability to replace isolinux.cfg after the compose is done, is a plugin. See Chapter 9, Plugins for
more information.

Current plugins included with Revisor include:

• Section 9.1.1, “Cobbler Plugin”

• Section 9.1.6, “Isolinux Plugin”

• Section 9.1.9, “Rebrand Plugin”

• Section 9.1.10, “Reuse Installer Images Plugin”

2.10. Extraneous Debugging
Revisor has extraneous debugging, which enables you, as well as the supporters and Revisor's
developers, to trace down what happens exactly, and where anything might have gone wrong.

2.11. Smart Caching
Revisor is one of the utilities that uses the same cache over and over again, across multiple product
composes. If you have downloaded something once, chances are you're going to need to download
it again and again especially if you are a frequent user of the compose tools. Revisor caches all the
downloaded packages in /var/tmp/revisor-yumcache/ (by default), enabling you to download
just once and never again.

Draft Using YUM Configuration Files

7

2.12. Using YUM Configuration Files
Revisor uses YUM configuration files, where everyone else is not. With using YUM configuration
files however, the control you have is nearly limitless. With all the features in YUM already, using it's
configuration file format and letting YUM itself work with those allows Revisor to do a lot of cool things
without doing anything itself:

1.Excluding packages from repositories
Excluding packages from repositories means a great deal. Not having them exist in the Package
Sack ensures the package will not end up in the product. This may be what you want for maybe
just a few, or maybe an awful lot of packages.

Using the alternative configuration file format, kickstart, in use by every other compose tool, and
the repo configuration directive that is available with kickstart, you can exclude packages using
the --exclude= parameter to the repo configuration directive. However, that parameter does
not allow wildcard matches.

2.Including only a certain (set of) package(s)
Including only a certain package, or certain set of packages is valuable when a lot of packages
exist in the repository configured, but you only need one or two.

3.Concurrent use of baseurl(s) and the mirrorlist
Like during normal YUM operations, the baseurl(s) and the mirrorlist configured for a repository
are used concurrently. This is not possible with the kickstart configuration directive repo, which
takes either --baseurl or --mirrorlist, but not both.

4.Repository priorities
Settings available with YUM are available within Revisor as well, like repository priorities. Using
repository priorities, you can have YUM decide to pull a package from the repository with a higher
priority (a lower priority number) rather then a repository with a lower priority.

5.YUM Plugins
YUM plugins, such as yum-fastestmirror, yum-fedorakmod, are available, giving you even more
control over the behaviour of YUM.

8

Draft Draft

Part I. Getting Started

Draft Chapter 3. Draft

11

Installation
This chapter contains the installation instructions for Revisor.

3.1. Packages
You can install Revisor using RPM packages from the repositories already configured on your system.

revisor
Shorthand package for the Revisor GUI.

revisor-cli
The CLI version of Revisor. This package is always installed, as it contains the Python code for
Revisor's core. Installing just this package will give you the command-line version of Revisor, and
prevents the graphical dependencies from the revisor-gui package to be installed as well.

revisor-gui
The GUI version of Revisor. This is the actual package containing the Graphical User Interface, as
opposed to revisor. Depends on revisor-cli, and thus also installs the command-line version of
Revisor.

3.1.1. Red Hat Enterprise Linux 5 or higher
On Red Hat Enterprise Linux 5 or higher, and derivatives, install the Extra Packages for Enterprise
Linux1 (EPEL) repository.

Then, give the following command:

yum install revisor

3.1.2. Fedora 7 or higher
On Fedora 7 or higher, and derivatives, no additional repository configuration is required.

Give the following command:

yum install revisor

About EOL Releases

Please bear in mind that Fedora releases that are past the point of End-Of-Life, approximatly 13
months after the initial release, are not supported anymore for use with Revisor. Also, the version
of Revisor running on these EOL versions of Fedora are not supported anymore.

1 Extra Packages for Enterprise Linux: http://fedoraproject.org/wiki/EPEL

http://fedoraproject.org/wiki/EPEL

Chapter 3. Installation Draft

12

3.2. The Latest and Greatest
The latest and greatest is available from GIT, at git://git.fedorahosted.org/revisor. To clone this
repository, use:

$ git clone git://git.fedorahosted.org/revisor/

Using the GIT clone, you have the several options to start using the latest and greatest:

Running directly from the source
You can run directly from within the source tree. See Section 14.1, “Running Revisor from Source” for
more information on how to do so.

Installed packages and running from source

Do not run Revisor from source while RPM packages have been installed. Files managed by a
package will get created, moved and removed when using Revisor's source tree, and updates to
the installed RPM packages will destroy these changes.

Building your own packages
You can create your own packages, so that you have all the benefits of RPM. See Section 14.2,
“Building Revisor Packages” for more information on how to do so.

git://git.fedorahosted.org/revisor

Draft Chapter 4. Draft

13

Configuration
Revisor configuration can be performed using Section 4.1, “Configuration Files”, or through
Section 4.5, “Command-line Options”.

We seriously recommend you consider configuration files for products you are going to have to build
more then once, or for seriously complex products that make use of Revisor functions beyond what is
a simple click-and-go exercise, such as rebranding and other advanced customization. On the other
hand, if you are just to try one or two simple things just for this once, command-line options might be
more suitable.

4.1. Configuration Files
Revisor uses configuration files for a large part of it's operations. These files mostly reside in /etc/
revisor/. There is two types of configuration files Revisor uses:

1.Revisor Configuration Files
Revisor configuration files, such as /etc/revisor/revisor.conf, contain information and
settings unique to Revisor. A Revisor configuration file is where you specify default options, and
include information on different products you want to compose.

2.YUM Configuration Files
YUM configuration files, such as the files in /etc/revisor/conf.d/, contain configuration for
YUM. To be more precise, Revisor doesn't even handle the files (it let's YUM do so). The files in /
etc/revisor/conf.d/ practically contain the same information as /etc/yum.conf combined
with the files in /etc/yum.repos.d/ (but not exactly the same content!).

4.1.1. /etc/revisor/revisor.conf
The default Revisor configuration file is /etc/revisor/revisor.conf. This configuration file
contains two sections:

1.[revisor]
The global section. Options specified in this section apply to all the models defined in this
configuration file.

See also: Section 4.2, “Global and Model Configuration”

2.[model]
Model configuration. You use one section per Model, and each section represents a product.

See also: Section 4.2, “Global and Model Configuration”

Model sections basically define a single product. Amongst other things, the distribution name, release
version, architecture for the product to be composed and what YUM configuration file to use, are
(often) defined on a per-model basis. There is a large number of settings available for models, and
they are all related to how the product is going to look like. The product name, the location of the RPM
payload for installation media, the ISO label, the YUM configuration file to use, are all model settings.

Using models, you can reproduce the outcome of the compose process, a product, simply by not
changing the model configuration anymore. If you want something different, you can just add another
model section, and name it differently.

To see what models are available with the Revisor standard package, use:

Chapter 4. Configuration Draft

14

revisor --list-models

4.1.2. /etc/revisor/conf.d/
The default YUM configuration files used by Revisor. In a model configuration section, the main =
setting points to one of the YUM configuration files in /etc/revisor/conf.d/.

The YUM configuration files configure the repositories available during a product compose, as well as
the available architectures.

4.1.3. Updates to Configuration Files
The Revisor packages (or any packages in Fedora for that matter) are not allowed to overwrite
existing configuration files in /etc/, and they should thus not do so. Users anticipate that if they
change a file in /etc/ these changes are persistent in that they are not destroyed when a package
is updated. If an update to Revisor is installed on your system, files with the extension .rpmnew may
be created --if you had changed anything in the file before applying the update. Since this world isn't
perfect, configuration errors may exist in the configuration files shipped with Revisor. Please pay close
attention to updates to these configuration files by searching for and examining the .rpmnew files.

You can use any file location (not just /etc/revisor/) for your own custom configuration.

4.1.4. Changing Configuration Files
If you are creating your own models off of the ones that ship with Revisor itself, please consider using
an alternative configuration file (a file other then /etc/revisor/revisor.conf, or copy the original
file for safekeeping. This way, you can always return to a working, sample configuration file and test
whether it is Revisor causing errors, or configuration mistakes.

4.2. Global and Model Configuration
The default Revisor configuration file, /etc/revisor/revisor.conf consists of multiple sections
(the file is in .INI format). One is the [revisor] global section, where you specify configuration
options that apply to each other section or Model.

The options specified in the global and model configuration sections apply to the Revisor compose in
the following order:

1. The options from the global section are read, tested and set.

2. The options from a model section are read, tested and set, regardless of whether the global
section had caused the setting to be set to a certain value already.

For example, if you know all the models in a configuration file are optical live media products, the
configuration sections could look like the following:

Example 4.1. Example revisor.conf global vs. model configuration

[revisor]
Optical live media for all models
media_live_optical = 1

[model1]
main = /etc/revisor/conf.d/revisor-model1.conf
description = The model1 product

Draft YUM Repository Configuration

15

architecture = i386
This is already configured in the global section of
this configuration file and can thus be removed.
#media_live_optical = 1

When Running the GUI

Note that when running Revisor in Graphical User Interface mode, you can still change a lot of
the settings supplied by Revisor through the configuration files loaded. When you are running
Revisor in GUI mode, the configuration files supply the defaults.

4.3. YUM Repository Configuration
The files in /etc/revisor/conf.d/ are YUM configuration files. Revisor directs YUM through its
API to use these files during the compose process, and does not handle these files itself. This chapter
explains how these files are used, how you can change them and lists a few tips and tricks.

Because these files are YUM Configuration files, you can configure anything that YUM supports. See
man yum.conf for more details.

4.3.1. $releasever and $basearch
When configuring a repository URL, make sure you do not use $releasever or $basearch
variables. Since Revisor allows cross-composing distributions between different versions of the
operating system, as well as different architectures, these variables need to be expanded to the
value intended. Ergo, if a repository configuration has http://server/repo/$releasever/$basearch/, for a
Fedora 12 i386 YUM configuration file you would need to change such in http://server/repo/12/i386/.

See also Section 4.3.7, “Testing & Troubleshooting the YUM Configuration”

4.3.2. Using a Local Mirror
If you have a local mirror of Fedora, you can use the baseurl configuration directive in each
repository configuration section to tell YUM to use the local mirror.

Optionally, you can also disable the mirrorlist, preferably by outcommenting it, so that YUM will
only use the local mirror.

The default baseurl uses http://download.fedoraproject.org/. This location may or may
not be suitable for you. If you have a local mirror, you might want to change this setting here, or add
your mirror to Fedora Project's Mirrorlist.

Adding your local mirror to the Mirrorlist

You can add your local mirror to the Mirrorlist, so that the Fedora Project mirrorlist redirects
you to your local mirror. Additionally, systems in your local network(s) will be redirected to the
local mirror. The local mirror does not have to be a public mirror in order to do so. See http://
admin.fedoraproject.org/mirrormanager/ for more details.

Alternatively, you can set each baseurl directive to the location of the repository on the local mirror.

See also Section 4.3.7, “Testing & Troubleshooting the YUM Configuration”

http://server/repo/$releasever/$basearch/
http://server/repo/12/i386/
http://admin.fedoraproject.org/mirrormanager/
http://admin.fedoraproject.org/mirrormanager/

Chapter 4. Configuration Draft

16

4.3.3. Using Local Files
If you have the repositories on your local filesystem, configure a baseurl of file:///path/to/
repository/.

Make sure to supply the correct path

Make sure to supply the correct path to the repository. file:// is the "protocol" for the location,
and the location is /path/to/repository/. Put together, you have three slashes.

See also Section 4.3.7, “Testing & Troubleshooting the YUM Configuration”

4.3.4. Using a DVD
A DVD does not contain enough packages to rebuild the installer images. If you are using a DVD and
you want to rebuild the installer images, you will need to have a network connection and a mirror you
can reach.

If you have no need for rebuilding the installer images, make sure you configure Revisor to not rebuild
the installer. There's a HOWTO on the subject in Section 6.4, “HOWTO: Re-use Installer Images”.

There is a list of required packages, but since the packages change per release and may change in
the middle of the release cycle as well, we cannot hand you a list that just works. If you really want
to know though, the list of packages are in Revisor's cfg.py. Maybe you can write a plugin with a
command-line option that spits out the required packages per model, and optionally download all of
them, and create a repository out of the downloaded packages. If you do so, please let us know at the
Revisor Development mailing-list at https://fedorahosted.org/mailman/listinfo/revisor-devel, and we'll
be glad to help you out or maintain the plugin upstream.

See also Section 4.3.7, “Testing & Troubleshooting the YUM Configuration”

4.3.5. Adding Third Party Repositories
When adding a third party repository, make sure you add the correct release version as well as
architecture to the Revisor YUM configuration file. Verify the location for the baseurl and/or
mirrorlist you configure manually or through YUM. Make sure you expand any $releasever,
$basearch and $arch variables.

There's a HOWTO on adding third party repositories included in this document at Section 6.1,
“HOWTO: Add a Third Party Repository”.

See also Section 4.3.7, “Testing & Troubleshooting the YUM Configuration”

4.3.6. Creating Your Own Repository
Creating your own repository is relatively simple. You take a directory, dump some RPM packages in
it, and run createrepo. See man createrepo for more information.

People often wonder how Revisor handles comps.xml group files.

When you create your own repository, essentially a third party repository, follow the directions in
Section 6.1, “HOWTO: Add a Third Party Repository” to add the repository configuration to Revisor's
YUM configuration, since your own repository is a third party repository as well.

See also Section 4.3.7, “Testing & Troubleshooting the YUM Configuration”

https://fedorahosted.org/mailman/listinfo/revisor-devel

Draft Testing & Troubleshooting the YUM Configuration

17

4.3.7. Testing & Troubleshooting the YUM Configuration
Before you use the (modified) configuration file, take it for a test run to see if you have configured YUM
properly.

Procedure 4.1. Testing a YUM configuration file
1.

yum -c /path/to/configuration/file \
 clean all

2.
yum -c /path/to/configuration/file \
 list kernel

Should this show errors, or fail otherwise, add -d 9 to the command line in order to have YUM spit
out more detailed debugging output. This detailed output should leave you a clue or two about what
might be wrong with the configuration.

4.4. Configuring A Proxy Server
Configuring a Proxy server to be used can be done through YUM, using the proxy= configuration
directive.

4.5. Command-line Options
With the command-line options available, you can configure options that either override what is in
the configuration file or have simply not been configured using the configuration file. With the default
configuration files that come with the revisor-cli package for example, no media products have been
pre-configured in the global configuration section. In the revisor-unity package however, some default
configuration has been applied so that Fedora Unity Re-Spins actually create CD, DVD and Rescue
ISO images as well as the Installation Tree, and include the sources.

Only some configuration options have CLI parameters. Use revisor --help to see a complete list of
configuration options you can supply on the command line.

Note that command-line options always override the configuration settings supplied in the
configuration files. Additionally, when using the graphical user interface, command-line options can be
overriden by GUI interaction.

18

Draft Chapter 5. Draft

19

Quick Start
This is a quick start guide to get you on your feet using Revisor really quickly, without any
modifications, advanced options, whatsoever.

When you execute Revisor for the first time, the following screen appears:

Figure 5.1. Revisor Welcome Screen

The first thing you'll notice, is that the Advanced Options are disabled. Don't worry, as the advanced
options are very limited at this point and do not get you anywhere right now. Press Get Started to get
started.

Chapter 5. Quick Start Draft

20

Figure 5.2. Select Media Type(s)

Select the DVD Set to compose installation media with the maximum size of a DVD per disc.

Draft

21

Figure 5.3. Select DVD Set

22

Draft Draft

Part II. Manual

Draft Chapter 6. Draft

25

HOWTO
This chapter includes a couple of HOWTOs on use-cases that Revisor serves.

6.1. HOWTO: Add a Third Party Repository
para

6.2. HOWTO: Create a Re-Spin
Fedora Unity is famous for creating Re-Spins, amongst other things. This, however, does not mean
you need to be some kind of guru or spins master to create your own Re-Spin ;-)

This is a HOWTO on composing a Re-Spin, but does not include testing the Re-Spin. Maybe it will
include testing the Re-Spin as soon as we get someone on board willing to write about it ;-)

1. First, install the revisor-unity package:

yum -y install revisor-unity

The revisor-unity package includes the configuration files Fedora Unity uses to execute
automatic and unattended composes for Re-Spins.

2. Execute the following for a x86_64 version of a Fedora 12 Re-Spin:

revisor --cli --config /etc/revisor-unity/f12-install-respin.conf \
 --model f12-x86_64-respin

6.3. HOWTO: Include folders and files on the Media
para

6.4. HOWTO: Re-use Installer Images
para

26

Draft Chapter 7. Draft

27

Using Kickstart
Kickstart is a configuration file format for automating installation procedures. Or at least, it was,
originally. Nowadays, kickstart files are used as input to the compose tools, including Revisor.

Revisor again is unique in that it does not require a kickstart file for input. The other tools only take
kickstart configuration files. Revisor though allows most of what is in a kickstart file to be configured
interactively in Graphical User Interface mode.

7.1. How Kickstart Is Used
There's two cases in which a kickstart file is used differently. One is during the compose of installation
media, and the other of course is during the compose of live media, or virtualization media.

7.1.1. Installation Media
In the case of installation media, the following settings are used:

• repo
The repo command in kickstart is used when Revisor is configured to use the repositories
configured in the kickstart file only. Use kickstart_repos = 1 to enable this feature, or set the
appropriate checkbox in the Revisor GUI.

• %packages
The %packages section in kickstart is used to determine the RPM payload on the installation
media. It can include groups and packages, and exclude packages. It accepts wildcards, both in
includes and excludes of packages (but not groups).

@core and @base

By default, groups @core and @base are included in the package manifest. You can specify
@base to not be included, by using %packages --nobase, but @core cannot be excluded
using a kickstart package manifest.

Using kickstart_exact, you can exclude @core and @base so that you need to explicitly select
them in the kickstart package manifest.

Using kickstart_exact_nevra ...

7.2. The Kickstart Package Manifest
para

Group @core
para

Group @base
para

Chapter 7. Using Kickstart Draft

28

Including groups of packages
para

Including a single package
para

Excluding a single package
para

Using wildcard matches
para

7.2.1. Using Kickstart with Package NEVRA
para

Draft Draft

Part III. Reference

Draft Chapter 8. Draft

31

Compose Process Details
This chapter lists the details of the compose process as well as dives deep into the features of
Revisor.

8.1. Overview
Of course, the compose process for installation media is a little different then the compose process for
live media.

When composing, Revisor starts out doing the following:

• Revisor initiates and loads plugins, options, and defaults. At this point, Revisor has a so-called
ConfigStore that holds all options Revisor knows about.

• Revisor reads the options from the command-line.

• Revisor reads the configuration file specified with the --config command-line parameter, or uses
it's builtin default, /etc/revisor/revisor.conf.

• Revisor reads the global [revisor] section for all settings available in it's ConfigStore and sets
those configured in the global section. Remember that if an option is not available in the ConfigStore
but is configured in the global configuration section, it is ignored.

• If a model is specified in the configuration file's global section [revisor], Revisor will set that
model to be used and loads it.

• If a model has been specified on the command-line, with option --model, Revisor loads that model.

• When loading the model, Revisor again iterates over all the settings that are in the ConfigStore,
checks if the setting has been configured in the model section, and adjusts the setting in the
ConfigStore if necessary. Again remember that if the ConfigStore does not know about one or the
other option already, that setting is ignored.

• Now that the defaults and configuration file settings have been applied to the ConfigStore, it is time
for Revisor to look at the options specified on the command-line to see if you wanted to override
anything.

• While loading each configuration setting available in the global [revisor], model-specific sections
and/or command-line, Revisor checks every settings against a function that is specifically written to
check such setting. For example, the label of an ISO cannot be longer then 32 characters.

• Especially in CLI mode, these settings build up the task list for Revisor. If there's nothing to do,
Revisor will throw an error explaining what's missing. If there's things to do that cannot be done in
one run, Revisor will throw an error explaining that.

• In Graphical User Interface mode however, if the settings loaded so far are all OK, the GUI will start.
Since you can still adjust a few settings from within the GUI, the settings loaded so far will be the
defaults for configuration settings that have a dialog for you to adjust them with, throughout the rest
of the process.

8.2. Installation Media
As we've explained before, composing installation media is a little different then composing live media.
That's not just because installation media should start an installation procedure and live media should
show you a nice, shiny, fully-functional Desktop.

Chapter 8. Compose Process Details Draft

32

For one, installation media allows split media. This means that Revisor can span the payload of the
product over multiple ISO images or multiple discs, if you will. When composing installation media,
Revisor basically does the following:

• Of course, Revisor goes through the loading of configuration options mentioned in the Overview.

• When you're done specifying options in the GUI, or when Revisor thinks it can go ahead using
the options specified in CLI mode, it takes the list of packages selected from either the GUI or the
kickstart %packages manifest.

Not getting too deep into details here, yet, because some of these things are routines shared with
other composing modes, but here's a few additional considerations Revisor makes when doing the
package selection.

• Normally, a kickstart %packages manifest only allows you to select package names. With Revisor
though, you can select exact package NEVRA to select a certain version or architecture for the
package that you want. Additionally, if a package is not available, Revisor searches the Provides
of the available packages.

8.3. Live Media
para

8.4. Respin Mode
Revisor has a respin mode that in some aspects differs from the regular routines. It is intended to
reflect behaviour of tools in use by the Fedora Project Release Engineering team as closely as
possible.

Re-Spin mode only affects installation media products.

In Re-Spin mode, the way the RPM payload is determined from kickstart differs from Revisor's normal
procedures. See Chapter 7, Using Kickstart for more details on using a kickstart package manifest.

A kickstart file's so-called Package Manifest usually looks like:

%packages
@group1
@group2 --nodefaults
@group3 --optional
package1
package2
-package3
%end

Which tells us the following:

• Include all mandatory and default packages from group1

• Include all mandatory packages from group2

• Include all mandatory, default and optional packages from group3

• Include package1, and package2

• Exclude package3

Depending on how you use this instructions or information, there is a slight difference in the package
set that ends up on the media you compose.

Draft Selecting Groups

33

8.4.1. Selecting Groups
Selecting groups has the following logic: When you load a repository you may also load the groups
file (often referred to as 'comps' or 'comps.xml'). This comps file is an XML file with categories, groups
(per category), and per group:

• a list of mandatory packages. If you select or include the group, these packages come with it.

• a list of default packages. If you select or include the group, these packages will come with it as
a default. If you only want the mandatory, minimum set of packages for this group, in a kickstart
package manifest append --nodefaults to the group line or in the Revisor GUI, right-click on the
group and choose Deselect all packages.

• a list of optional packages. If you select a group you have not yet selected these packages. To
select the optional packages of a group, in a kickstart package manifest append --optional to the
group line or in the Revisor GUI, right-click on the group and choose Select all optional packages.

• a list of conditionals. If you select this group, these conditionals are thrown into the package sack
and transaction information and include or exclude other packages. Suppose you select the '@nl-
support' or “Dutch Support” group from the Languages or Localization category, you would end up
with support for the Dutch language in all applications that have that kind of support.

8.4.2. Select Matching Packages
This is the logic Revisor applies when running in Re-Spin mode (on the CLI, specify --respin). It
imitates the behavior pungi has, and thus enables you to copy that behavior. Note that --respin has
other implications as well.

First of all, it iterates the groups in the kickstart package manifest. For each group, it appends the
names of the mandatory packages to a list, and depending on the additional parameters specified with
that group (--nodefaults or --optional), appends the names of the other packages in that group
as well.

Then it iterates over the package names in the package manifest. These package names are
appended to the same list of package names too. This includes package 'names' with some sort of
wildcard (?, or *).

Then it iterates over all the excluded packages, appending each of those to the YUM configuration
exclude list.

Now that Revisor has a very simple, flat list of package names, it uses YUM's internal matching logic
5 to get what packages in the repositories matched exactly (by name), matched (by wildcard) and did
not match at all. Revisor then selects the exact matches and matches, adding them to the transaction.

8.5. Dependency Resolving
Dependency resolving is the area where some of the efficiency Revisor can gain for you comes from.
While of course there is specific reasons to do things one way, or the other, most people I speak to
about Revisor, it is not very clear why, or what Revisor does in this area. First of all, there's two ways
of resolving dependencies:

1.Inclusive Dependency Resolving
Iterate all packages in the transaction and list their requirements, then for each of those
requirements, find all packages that provide a matching capability, add those packages to the
transaction, and don't forget to add the requirements those packages have themselves, back into
the pile of (unmet) requirements.

Chapter 8. Compose Process Details Draft

34

2.Exclusive Dependency Resolving
Iterate all the packages and for each of the requirements found, find the best package that meets
the requirement. This is also YUMs default behavior. Anaconda uses YUM during the installation,
and this is the behaviour of YUM used during the installation.

8.5.1. Inclusive Dependency Resolving
Hypothetically, you could describe inclusive dependency as follows:

final_packages = []
more_to_do = True
while more_to_do:
more_to_do = False
for package in packages:
 if package in final_packages:
 continue

 dependencies = find_package_dependencies()
 for dependency in dependencies:
 pulled_in_package = pull_in_dependency()
 if pulled_in_package not in final_packages:
 packages.append(pulled_in_package)
 more_to_do = True

So, what does this mean? Basically, it means that if there is a requirement for a capability, all
packages providing that capability are being pulled in. Now imagine package 'foo' requires capability
'web-client'. There's a number of packages providing that capability, right? So you get Firefox, lynx,
elinks, konqueror, safari, Netscape, Internet Explorer, emacs, for free! All of those pull in their own
dependencies also, of course.

Note

If you catch this before it catches you, you can prevent the packages from being pulled in
during dependency resolving by not making the package available in the Package Sack in
the first place, using the -firefox syntax in the kickstart package manifest, and setting
kickstart_uses_pkgsack_excludes to 1.

Note

You may have thought of it; pulling in packages this way may give you a package set (or RPM
payload) that has conflicting packages. Imagine package foo requiring capability bar, which is
provided by two packages that conflict with one another (either on explicit Conflicts: RPM
header or file level). Both will be pulled in, hence disabling you to install everything ('*' or -
previously- @Everything in the kickstart package manifest).

8.5.1.1. When This Makes Sense
If you are composing a large distribution of which 3 million users in even so many different situations
having so many different expectations and desires, you will want this behaviour, since you won't be
able to determine which one of the packages for each capability someone in that group wants, and
which one may not want. Or, in case of upgrades, what the system needs. Shipping them all on the
same media is the best solution in these cases.

Draft Exclusive Dependency Resolving

35

8.5.1.2. When This Does Not Make Sense
• When creating installation media to be installed unattended, or to be used in conjunction with

deployment strategies

• When creating installation media to be upgrading PCs you have controlled from the beginning, such
as in a company

• Installation for a small group of users or systems

• When creating minimal installation media, or media with a minimal RPM payload.

• When creating installation media that is to be used with installing "Everything" in the RPM payload.

8.5.2. Exclusive Dependency Resolving
Exclusive dependency resolving is what YUM does when you execute a yum install. Unless you've
specified one of the packages satisfying any of the dependencies in the transaction, YUM is going
to look up the best match for you. This results in the installation of only one package providing the
requirement(s) of other packages, rather then all packages providing said requirement being installed.

As an example, imagine you install a package foo which requires capability web-client. Using
exclusive dependency resolving, YUM would select one package providing the web-client capability
whereas inclusive dependency resolving would include all packages providing the web-client
capability.

During the installation procedure, one of the major features of installation media, anaconda is going to
use YUM dependency resolving to satisfy all the dependencies.

Installation Procedure !== Upgrade Procedure

Note that an installation procedure is not the same as an upgrade procedure. With an installation
procedure for example, you have control over the partitioning layout whereas with an upgrade
procedure, you have none. More importantly, during an upgrade procedure, the (already
installed) system has an existing package set which needs to be updated/upgraded and thus
could possibly introduce dependency resolving problems, because of third party packages
installed on the system, or because the media used to upgrade the system with does not contain
the software packages needed to complete the upgrade RPM transaction.

8.6. Copying Arbitrary Files Onto the Media
With --copy-dir, you can specify a path Revisor should copy onto the media.

Installation Media
In the case of installation media, the path specified with --copy-dir will be copied recursively to the
files/ sub-directory at the root of the ISO image (or the first ISO image if you compose split media).

A few use-case examples:

• If one kickstart profile is not enough for you to deploy the product onto your systems, create a
directory that holds multiple kickstart files and specify the path to that directory using --copy-
dir. The kickstart files now end up available to the installation procedures as cdrom:/files/
*.ks, and can thus be used by specifying them on the kernel cmdline (ks=cdrom:/files/
profile1.ks), or, when used in combination with --isolinux-cfg from the Isolinux Plugin, can
be added as an option in the isolinux menu.

Chapter 8. Compose Process Details Draft

36

• If you have files or scripts that need to be copied onto, or run on, the installed system before it
attempts to reboot and operate normally, you can use --copy-dir to make these files and scripts
available during the installation and copy or execute them from either %pre or %post scripts.

Live Media
In the case of live media, the path specified with --copy-dir will be copied recursively onto the
root directory (/) of the live media filesystem (which is probably loop-mounted onto /var/tmp/
revisor/).

If, for example, you want to copy a home directory onto the live media, and the home directory you
want to copy is at /home/user1/ on the composing system, you copy this directory so that the root of
that new directory has a sub-directory home/ which in turn contains a sub-directory user1/:

$ mkdir -p /tmp/something/home/
$ cp -a /home/user1 /tmp/something/home/.
$ revisor [options] --copy-dir /tmp/something/

8.7. Cleaning Up
Revisor tends to clean up after itself by default. If a product compose succeeds, you (probably) don't
need to change this default behaviour. However, by default, Revisor tends to leave the YUM cache
directories untouched. This is to prevent you from having to download all the packages a second, third
or more times when you run another compose.

To change this default behaviour, Revisor has an option --clean-up. The default value for this
option is 1, meaning Revisor will clean up it's temporary, compose-specific files, but no files that
could be re-used. Specifying --clean-up=0 will cause Revisor to leave everything behind and not
clean anything up at all. This is most ideal for troubleshooting purposes, where one needs to examine
the temporary, compose-specific files and see what went wrong. To clean up everything however,
because for example you might be low on disk-space, use --clean-up=2. Revisor will then also
clean up the files that could be re-used.

8.7.1. Exception to the Rule
There's one exception to the rule of cleaning up. /var/tmp/revisor/, or put more accurately, the
path specified as the installroot in the YUM configuration file configured with the model used to
compose the product, will not be cleaned up afterwards. When composing live media, this directory
may still be in use as a mount-point for the live media filesystem. Removing this directory recursively
in these cases would not make sense.

Draft Chapter 9. Draft

37

Plugins
para

9.1. Upstream Plugins
Plugins available from upstream, maintained by upstream

9.1.1. Cobbler Plugin
The Cobbler plugin is able to put the product composed into a Cobbler environment, by handing off the
built product to the existing Cobbler infrastructure as a distro, and creating a profile.

Using this module, one can automatically import the Revisor product into a Cobbler environment, and
immediately use the new Cobbler profile to start deploying or automated testing, maybe.

9.1.2. Composer Plugin
para

9.1.3. Delta Plugin
A small change to a ISO image does not require you to download the complete ISO image if you have
a copy of the old ISO image.

Only applicable to (...)

The generation of Delta ISO images is only applicable to situations in which the ISO image does
not contain SquashFS images. SquashFS images are smaller, but all SquashFS images are
unique. Since the Delta principle is based on similarities, and no two SquashFS images are alike,
creating a Delta on two ISO images containing SquashFS images will lead to a Delta pratically
the same size as the SquashFS image. For Live Media that compresses the ext3 filesystem
image into a SquashFS image, since that SquashFS image is probably over 97% of the size of
the ISO image, creating Delta images for compressed Live Media does not make sense. For
installation media however, most RPMs would be similar as well as (potentially) the installer
images.

9.1.4. GUI (Graphical User Interface) Plugin
Yes, the Graphical User Interface for Revisor is actually a plugin.

9.1.5. HUB Plugin
para

9.1.6. Isolinux Plugin
The isolinux plugin adds the --isolinux-cfg command-line option to Revisor. Specify a file here,
and the original isolinux.cfg that is built as part of the compose process is replaced by the
isolinux.cfg specified.

Chapter 9. Plugins Draft

38

9.1.7. Jigdo Plugin
para

9.1.8. Mock Plugin
para

9.1.9. Rebrand Plugin
The rebrand plugin hooks in to Revisor at several different stages. The goal of this plugin is to ensure
no trademarked packages end up on the media. Trademarked packages may include fedora-logos,
redhat-logos, and so forth.

The plugin adds a --rebrand option, to which you can specify the name of your new product. When
rebranding Fedora to Omega for example, specifying --rebrand Omega would be sufficient to make
sure the product does not have any Fedora trademarks.

9.1.10. Reuse Installer Images Plugin
para

9.1.11. Server Plugin
para

9.1.12. Virtualization Plugin
para

9.1.13. WUI (Web-based User Interface) Plugin
para

9.2. Writing Your Own Plugins
para

Draft Chapter 10. Draft

39

Tweaking the build process
para

10.1. Reusing Existing Installer Images
para

10.2. Building The Installer Images in Mock
para

10.3. Omitting isomd5sums
para

10.4. Omitting SHA1SUMS
para

40

Draft Chapter 11. Draft

41

Tips and Tricks
para

11.1. The spin-kickstarts Package
para

11.2. Even More Debugging
something about using -x to buildinstall scripts

11.3. Kickstart Validator
something about using -x to buildinstall scripts

11.4. Using Mirrormanager for Mirror Redirection
Something about using Mirrormanager to redirect you to the local mirror (so you do not have to edit
YUM configuration files).

11.5. Using The localrepo DNS Alias
Something about using the localrepo DNS alias to point to your local mirror (either through real DNS or
through /etc/hosts), so you do not have to edit the YUM configuration files.

42

Draft Chapter 12. Draft

43

Frequently Asked Questions
para

How Does Revisor Handle Comps?
para

What Are Installer Images?
para

What is the relationship between Revisor and Pungi?
Where pungi builds a bunch of RPMs into ISO images and installation trees through one single
procedure, perfect for Release Engineering on something like the Fedora Project, Revisor does it
different entirely.

What is the relationship between Revisor and livecd-tools?
Revisor depends on livecd-tools for the composing of live media. Creating the filesystem to install the
packages to, turning that image file into a SquashFS file, and applying the settings inside the chroot.

Why Rebuild Installer Images?
para

How do I create an updates.img?
para

44

Draft Chapter 13. Draft

45

Testing
The following test cases describe different types of testing a new Revisor release.

13.1. Simple Test Cases
This section has a few simple test cases ensuring configuration shipped with Revisor works as
anticipated.

13.1.1. Packages
Install the revisor-cli:

yum --enablerepo=updates-testing install revisor

Installed are all dependencies for the Revisor CLI interface. Make sure spin-kickstarts is installed, a
package for sample kickstarts.

Starting Revisor as follows should not show any error messages related to Revisor attempting to start
up it's GUI interface:

revisor

Configuration Files
The following configuration files should exist:

• /etc/revisor/revisor.conf

Each section should have a configuration file listed as main.

And, of course, every configuration file listed in each section. In this case, the following snippet is easy
enough:

$ i=0; \
 configfiles="`grep ^main /etc/revisor/revisor.conf | \
 sed -r -e 's/^main.*=\s*(.*)/\1/g'`"

for configfile in $configfiles; do \
 [! -f $file] && i=1; \
done; \
echo $i

Another way to test the configuration file is to execute:

$ revisor --list-models >/dev/null

If everything is well, since STDOUT is redirected to /dev/null, you should see no messages at all.

13.1.2. Configuration Files
The main Revisor configuration file is /etc/revisor/revisor.conf. The file lists a series of
models, each having their own YUM configuration file in /etc/revisor/conf.d/.

Chapter 13. Testing Draft

46

Testing
• For each model in /etc/revisor/revisor.conf, the main setting for that model should point to

a valid file.

• Each YUM configuration file should work. To verify, run the following command for each
configuration file:

$ yum -c $file list kernel

Known Errors
• Revisor has baseurls in YUM repositories set to http://localrepo. This URL will not be retrievable for

many people, but allows the developers to quickly change mirrors.

• Repositories that are unavailable at the moment of testing will throw errors Revisor can't do anything
about.

• If the directories revisor-yumcache/ and revisor/ in /var/tmp/, the default working
directory, are not writeable for the user then YUM will throw permission denied errors.

Remove /var/tmp/revisor/ and /var/tmp/revisor-yumcache/ or run the command with
root permissions.

13.1.3. Requirements for Compose Results
Although heavily dependent on Anaconda for this part, these are still requirements

ld-linux.so.2
In the initrd.img of the composed product, if 32-bit, /lib/ld-linux.so.2 (or any other version)
should link to /lib/ld-2.9.so (or any other version). If /lib/ld-linux.so.2 links to itself, the
media will fail to install.

How to test
In a terminal, type the following command:

$ lsinitrd /path/to/initrd | grep ld-linux

See also: https://www.redhat.com/archives/anaconda-devel-list/2009-February/msg00115.html

13.2. Complex Test Cases
para

13.3. Specific Test Cases
para

http://localrepo
https://www.redhat.com/archives/anaconda-devel-list/2009-February/msg00115.html

Draft Chapter 14. Draft

47

Development
This chapter sheds some light on development of Revisor, such as different branches and
maintenance policies, versioning schemas, etcetera.

This part of the documentation relies on whether you have sudo set up properly. If you have not,
you're on your own.

14.1. Running Revisor from Source
The latest code in GIT can be built into a RPM you can install but one of the advantages of having
the complete source tree is that you can run it directly from that source tree so that when you pull in
the next updates you do not have to rebuild the RPM. Note that we do not bump the version number
for every little change we make, and as such the RPM built does not allow you to use rpm -Uvh or
rpm -Uvh --oldpackage. Of course, Revisor's Makefiles also allow make install, but that leaves
a number of unmanaged files on your computer you would have to track down manually in order to
remove Revisor completely.

Cannot have Revisor RPMs installed

When running revisor from within the source tree, you cannot have any of the Revisor packages
installed. Having Revisor RPM packages installed regardless will mess up the GIT repository or
source tree.

To run Revisor from within the source tree, checkout the master branch, and run the ./switchhere
script:

$./switchhere

The ./switchhere script does the following:

• Symlink /etc/revisor/ to $PWD/conf/ so that /etc/revisor/revisor.conf, the primary
configuration file, and /etc/revisor/conf.d/, the configuration directory, are valid (the symlink
causes the actual file and directory to be found in $PWD/conf/)

• Create the /usr/share/revisor/ directory so that a couple of symlinks can be created from
within that directory:

• In Revisor 2.1.0 (development version in branch master), this includes:

• /usr/share/revisor/ui => $PWD/revisor/modgui/glade/

• /usr/share/revisor/pixmaps => $PWD/revisor/modgui/glade/pixmaps/

• /usr/share/revisor/comps => $PWD/conf/

• In Revisor 2.0.5 (branch F-7, F-8 or EL-5), this includes:

• /usr/share/revisor/ui => $PWD/glade/

• /usr/share/revisor/pixmaps => $PWD/glade/pixmaps/

• /usr/share/revisor/comps => $PWD/conf/

Chapter 14. Development Draft

48

• In Revisor 2.1.0, also create symlinks from within the appropriate /usr/share/man/man$x/
directories to the source for these man pages in $PWD/doc/.

From this moment on, you should be able to run:

$./revisor.py

Root privileges required

Note that revisor needs root privileges to run, and that you'll need to sudo or su-c to gain those.
Use here whatever you find the most convenient; Revisor though should have a nice error
message when run without those privileges.

14.1.1. Installing the Required Packages
To be able to run Revisor from within the source tree, you'll need to install the required packages for
each component, of course.

To get a current list of those packages, use:

$ rpmquery --specfile --qf="%{REQUIRES}\n" revisor.spec | sort | uniq | xargs -n 1 repoquery
 --requires --alldeps --resolve

14.2. Building Revisor Packages
para

14.3. Tickets
bugzilla, trac

14.4. Adding a new spin or remix
1. Add the appropriate models in the appropriate configuration file for Revisor.

2. Add the appropriate configuration file to the appropriate automake Makefile

3. Run autoreconf && ./configure && make rpm to verify the rpm building

4. Create the model's YUM configuration files with the following repositories:

• fedora, enabled, pointing to Everything

• fedora-source, disabled, pointing to Everything

• fedora-updates, enabled, pointing to the updates repository

• fedora-updates-source, disabled, pointing to the updates repository

• anaconda-updates, enabled, pointing to the anaconda updates repository

• anaconda-updates-source, disabled, pointing to the ananconda updates repository

Draft Versioning Schema

49

14.5. Versioning Schema
para

14.6. Release Procedure
para

50

Draft Draft

51

Appendix A. Revision History
Revision 1.0

52

Draft Draft

53

Index

D
Dependency Resolving, 33

Inclusive, 33, 34

F
feedback

contact information for this manual, x

M
model, 57

P
Package Manifest, 57
Package Sack, 57

R
Re-Spin

Fedora Unity Re-Spin, 57
Remix, 57

S
Spin, 57

54

Draft Draft

Part IV. Appendices

Draft Draft

57

Appendix A. Terminology

Model
A model in Revisor describes a product.

Package Manifest
A package manifest is the list of groups and packages to include or exclude from a transaction, in a
kickstart configuration file.

Remix
A Fedora Remix is a product based on Fedora, with Fedora packages and optionally, other packages
as well, such as those from third-party repositories.

Re-Spin
A Fedora Re-Spin is a product that is composed for the single purpose of including updated software
packages into the product. It uses the same compose procedure as the media that the Fedora Project
composes and releases, but includes updates.

Fedora Unity releases Fedora Re-Spins every so often, twice or trice per release.

Spin
A Fedora Spin is a custom set of software packages, often for a specific audience. Spins include
a KDE Spin, which contains KDE software packages rather then the Desktop spin, which is based
around GNOME. Similarly, there are XFCE, LXDE, Sugar, Education, Games and Developer Spins.

Fedora Spins have gone through the Spins Process (http://fedoraproject.org/wiki/Spins_Process), and
have been approved trademark usage by the Fedora Project Board.

Package Sack
When YUM creates a list of packages available from the repositories configured, including package
metadata such as dependencies and provided capabilities for each package, YUM creates a
PackageSack. It's basically a large bag with all Package Objects, filtered by compatible architectures
for the configured architecture.

http://fedoraproject.org/wiki/Spins_Process

58

Draft Draft

59

Appendix B. Configuration Reference
This is the configuration reference for Revisor. Options are listed in alphabetical order.

B.1. Configuration Options

Table B.1. Configuration Options

Configuration Options

Configuration Directive CLI Option

 Possible Values Default Context

 Description

answer_yes -y, --yes

0, 1 0 global, model

Answer yes to all questions. This enables you to run an automated, unattended
compose.

clean_up --clean-up

0, 1, 2 1 global, model

Should Revisor not clean up at all (0), clean up it's temporary build data (1), or
everything (2). Note that everything includes the yum cache.

copy_dir --copy-dir

[dir] False global, model

A directory tree to copy onto the media created. In the case of installation media, the
contents of the directory specified are copied onto cdrom:/files/. In the case of live
media, the contents of the directory specified are copied onto the root filesystem of the
live system. See also Section 6.3, “HOWTO: Include folders and files on the Media”.

copy_local --copy-local

 False global, model

Tell Revisor to copy files, even when they are local. This applies to relative corner-cases
where the repositories or the destination_directory is mounted over NFS, and
some actions cannot be performed.

debuglevel -d, --debug

0 - 9 0 global, model

The level of debugging. 0 is the lowest debug level, whereas 9 is the highest. Revisor
turns up the volume quickly. The logfile on debug level 9 may very easily become
20-30MB.

destination_directory --destination-directory

/srv/revisor/ [path] global, model

The destination directory for the product. Revisor creates a sub-directory with the name
of the model used, and places the product in that directory.

getsource --source

 False global, model

Whether to obtain the source along with the binary RPMs used. This is False by default,
and therefor the source is not included by default. Note that if you are distributing your

Appendix B. Configuration Reference Draft

60

Configuration Options

Configuration Directive CLI Option

 Possible Values Default Context

 Description
product to third parties, you need to be able to provide the sources along with the binary
product.

include_bootiso

0, 1 0 global, model

Whether to include the relatively large boot.iso on the optical installation media created.
Setting this to 0 will still include boot.iso in the installation tree created (if configured with
media_installation_tree1)

kickstart_default --kickstart-default

0, 1 0 global, model

Whether to set the isolinux.cfg entry that makes the installer use the kickstart included
on the media, as a default.

kickstart_exact --kickstart-exact

0, 1 0 global, model

Tells Revisor to ignore @core and @base groups (like with %packages --nobase)
and only add what is in the package manifest.

kickstart_exact_nevra --kickstart-exact-nevra

0, 1 0 global, model

Tells Revisor to only add what is in the package manifest. In addition, if the transaction
changes (because of dependency resolving, for example), Revisor will stop composing.

kickstart_file --kickstart

[file] 0 global, model

What kickstart file to use. When in CLI mode, this is a mandatory setting.

kickstart_include --kickstart-include

0, 1 0 global, model

Whether to include the kickstart on the media so that the installer may find it as
cdrom:/ks.cfg.

kickstart_repos --kickstart-repos

0, 1 0 global, model

Whether to use the repo directives in the kickstart provided to Revisor. Useful in
cases where the repo directive in the kickstart file provided points to an arbitrary
repository such as a repository mirrored by Cobbler, since there is no default URI
location for those repositories -and Cobbler refers to them in the kickstart (template)
using $yum_repo_stanza

kickstart_save --kickstart-save

0, 1 0 global, model

Where to save the resulting kickstart. In GUI mode, when changes to the package set
can be applied, saves those changes out into a new kickstart file.

media_installation_bluray_duallayer --install-bluray-dl

0, 1 0 global, model

Draft Configuration Options

61

Configuration Options

Configuration Directive CLI Option

 Possible Values Default Context

 Description

Whether to create Bluray Duallayer installation media (47GiB).

media_installation_bluray --install-bluray

0, 1 0 global, model

Whether to create Bluray installation media (23GiB).

media_installation_bluray_duallayer --install-bluray-dl

0, 1 0 global, model

Whether to create Bluray Duallayer installation media (47GiB).

media_installation_cd --install-cd

0, 1 0 global, model

Whether to create CD installation media (685MiB).

media_installation_dvd --install-dvd

0, 1 0 global, model

Whether to create DVD installation media (4.3GiB).

media_installation_dvd_duallayer --install-dvd-dl

0, 1 0 global, model

Whether to create DVD Duallayer installation media (8.0GiB).

media_installation_tree --install-tree

0, 1 0 global, model

Whether to create a an installation tree2 (for publication over HTTP or FTP, or through
Cobbler). No size limit.

media_installation_unified --install-unified

0, 1 0 global, model

Whether to create a unified ISO, installation media (no size limit).

media_live_optical --live-optical

0, 1 0 global, model

Whether to create Optical Live media (size unknown).

model --model

[model] global

The model to use.

report_sizes --report_sizes

0, 1 0 global, model

Report the sizes of RPM packages used. Lists the biggest packages in the transaction

mode_respin --respin

 False global, model

Whether Revisor should operate in respin mode. See also Section 8.4, “Respin Mode”

working_directory -d, --debug

Appendix B. Configuration Reference Draft

62

Configuration Options

Configuration Directive CLI Option

 Possible Values Default Context

 Description

0 - 9 0 global, model

The level of debugging. 0 is the lowest debug level, whereas 9 is the highest. Revisor
turns up the volume quickly. The logfile on debug level 9 may very easily become
20-30MB.

1 Note that the installation tree is always created. See Chapter 8, Compose Process Details for more details.
2 Note that the installation tree is always created. See Chapter 8, Compose Process Details for more details.

	Reference
	Table of Contents
	Preface
	1. About the Contributors
	2. About Fedora Unity
	3. About this Document
	4. Document Conventions
	4.1. Typographic Conventions
	4.2. Pull-quote Conventions
	4.3. Notes and Warnings

	5. We Need Feedback!

	Chapter 1. Introduction
	1.1. History of Revisor
	1.2. The Installation Media Challenge
	1.3. The Live Media Challenge

	Chapter 2. Features
	2.1. Installation Media
	2.2. Installation Trees
	2.3. Live Media
	2.4. Reproducibility
	2.5. Consistency
	2.6. Flexibility
	2.7. Graphical User Interface
	2.8. Open Development Community
	2.9. Plugin System
	2.10. Extraneous Debugging
	2.11. Smart Caching
	2.12. Using YUM Configuration Files

	Part I. Getting Started
	Chapter 3. Installation
	3.1. Packages
	3.1.1. Red Hat Enterprise Linux 5 or higher
	3.1.2. Fedora 7 or higher

	3.2. The Latest and Greatest

	Chapter 4. Configuration
	4.1. Configuration Files
	4.1.1. /etc/revisor/revisor.conf
	4.1.2. /etc/revisor/conf.d/
	4.1.3. Updates to Configuration Files
	4.1.4. Changing Configuration Files

	4.2. Global and Model Configuration
	4.3. YUM Repository Configuration
	4.3.1. $releasever and $basearch
	4.3.2. Using a Local Mirror
	4.3.3. Using Local Files
	4.3.4. Using a DVD
	4.3.5. Adding Third Party Repositories
	4.3.6. Creating Your Own Repository
	4.3.7. Testing & Troubleshooting the YUM Configuration

	4.4. Configuring A Proxy Server
	4.5. Command-line Options

	Chapter 5. Quick Start

	Part II. Manual
	Chapter 6. HOWTO
	6.1. HOWTO: Add a Third Party Repository
	6.2. HOWTO: Create a Re-Spin
	6.3. HOWTO: Include folders and files on the Media
	6.4. HOWTO: Re-use Installer Images

	Chapter 7. Using Kickstart
	7.1. How Kickstart Is Used
	7.1.1. Installation Media

	7.2. The Kickstart Package Manifest
	7.2.1. Using Kickstart with Package NEVRA

	Part III. Reference
	Chapter 8. Compose Process Details
	8.1. Overview
	8.2. Installation Media
	8.3. Live Media
	8.4. Respin Mode
	8.4.1. Selecting Groups
	8.4.2. Select Matching Packages

	8.5. Dependency Resolving
	8.5.1. Inclusive Dependency Resolving
	8.5.1.1. When This Makes Sense
	8.5.1.2. When This Does Not Make Sense

	8.5.2. Exclusive Dependency Resolving

	8.6. Copying Arbitrary Files Onto the Media
	8.7. Cleaning Up
	8.7.1. Exception to the Rule

	Chapter 9. Plugins
	9.1. Upstream Plugins
	9.1.1. Cobbler Plugin
	9.1.2. Composer Plugin
	9.1.3. Delta Plugin
	9.1.4. GUI (Graphical User Interface) Plugin
	9.1.5. HUB Plugin
	9.1.6. Isolinux Plugin
	9.1.7. Jigdo Plugin
	9.1.8. Mock Plugin
	9.1.9. Rebrand Plugin
	9.1.10. Reuse Installer Images Plugin
	9.1.11. Server Plugin
	9.1.12. Virtualization Plugin
	9.1.13. WUI (Web-based User Interface) Plugin

	9.2. Writing Your Own Plugins

	Chapter 10. Tweaking the build process
	10.1. Reusing Existing Installer Images
	10.2. Building The Installer Images in Mock
	10.3. Omitting isomd5sums
	10.4. Omitting SHA1SUMS

	Chapter 11. Tips and Tricks
	11.1. The spin-kickstarts Package
	11.2. Even More Debugging
	11.3. Kickstart Validator
	11.4. Using Mirrormanager for Mirror Redirection
	11.5. Using The localrepo DNS Alias

	Chapter 12. Frequently Asked Questions
	Chapter 13. Testing
	13.1. Simple Test Cases
	13.1.1. Packages
	13.1.2. Configuration Files
	13.1.3. Requirements for Compose Results

	13.2. Complex Test Cases
	13.3. Specific Test Cases

	Chapter 14. Development
	14.1. Running Revisor from Source
	14.1.1. Installing the Required Packages

	14.2. Building Revisor Packages
	14.3. Tickets
	14.4. Adding a new spin or remix
	14.5. Versioning Schema
	14.6. Release Procedure

	Appendix A. Revision History
	Index
	Part IV. Appendices
	Appendix A. Terminology
	Appendix B. Configuration Reference
	B.1. Configuration Options

